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Foreword 

The Australasian Data Mining Workshop is a flagship event in the area of discovering 
meaningful insights in large data sets. The art and science of analytics and data mining have 
always attracted researchers and industry practitioners in the region. Data mining projects 
involve both the utilisation of established algorithms from machine learning, statistics, and 
database systems, and the development of new methods and algorithms, targeted at large data 
mining problems. Nowadays data mining efforts have gone beyond crunching databases of 
credit card usage or retail transaction records. The progress in computing technology affects 
all aspects of human existence. The data mining technologies are becoming the core part of 
the so-called “embedded intelligence” in business, health care, drug design, biology, design 
and other areas of human endeavour.  

The first edition of the Australasian Data Mining Workshop was a successful event, 
conducted in conjunction with the 15th Australian Joint Conference on Artificial Intelligence, 
2nd - 6th December 2002, Canberra, Australia. The workshop attracted a number of 
participants from Australian industry, academia, research institutions and centers, in 
particular, researchers from the ANU Data Mining Group, CSIRO Enterprise Data Mining, 
and UTS Smart e-Business Systems Lab. The workshop facilitated the links between different 
research groups in Australia and industry, evidenced by the initiative in the creation of an 
Australian Research Council Research Network on Improving Australia's Data Mining and 
Knowledge Discovery Research, and the Institute of Analytic Professionals of Australia. It 
also strengthened the interconnections between researchers in academic and research 
organisations, and industry practitioners, who utilise data mining techniques in various 
business case studies.  

This year the workshop builds on these trends. The workshop is expected to broaden and 
strengthen the links within the analytics community, offering a forum for presenting and 
discussing latest research and practical experience in the area. The workshop follows a rigid 
blind peer-review process and ranking-based paper selection process. All papers were 
extensively reviewed by two to three referees drawn from the program committee. Papers that 
present comprehensive, completed (or near completion) research work have been allocated 
larger presentation time slots. The works that present research work in progress or “green 
house” ideas have been allocated shorter time slots, with more time left for discussion. The 
organisers have reserved a special presentation session for an overview of on-going 
initiatives. 

Once again, we would like to thank all those, who supported this year’s efforts on all stages – 
from the development and submission of the workshop proposal to the preparation of the final 
program and proceedings. We would like to thank all those who submitted their work to the 
workshop. Special thanks go to the program committee members and other reviewers, for the 
final quality of selected papers depends on their efforts.  
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Preliminary Investigations into Statistically

Valid Exploratory Rule Discovery

Geoffrey I. Webb

School of Computer Science and Software Engineering, Monash University,
Melbourne, Vic 3800, Australia
webb@infotech.monash.edu

Abstract. Exploratory rule discovery, as exemplified by association rule
discovery, is has proven very popular. In this paper I investigate issues
surrounding the statistical validity of rules found using this approach
and methods that might be employed to deliver statistically sound ex-
ploratory rule discovery.

1 Introduction

Association rule discovery has proven very popular. However, it is plagued by
the problem that it often delivers unmanageably large numbers of rules. As the
current work reveals, not only are the rules numerous, but in at least some cases
the vast majority are spurious or unproductive specialisations of more general
rules. This paper discusses the issues of spurious and unproductive rules and
presents preliminary approaches to address them. Experimental results confirm
the practical realisation of the concerns and suggests that the preliminary tech-
niques presented are effective.

2 Exploratory rule discovery

I use the term exploratory rule discovery to encompass data mining techniques
that seek multiple rather than single models, with the objective of allowing the
end-user to select between those models. It is distinguished from predictive data

mining that seeks a single model that can be used for making predictions.
Exploratory data mining is often applicable when there are factors that can

affect the usefulness of a model but it is difficult to quantify those factors in a
manner that may be used by an automated data mining system. By delivering
multiple alternative models to the end-user they are empowered to evaluate
the available models and to select those that best suit their business or other
objectives.

Three prominent frameworks for exploratory rule discovery on which I here
focus are association rule discovery [1], k-most-interesting rule discovery [2] and
contrast or emerging pattern discovery [3, 4] as it is variously known. These tech-
niques all discover qualitative rules, rules that represent relationships between
nominal-valued variables.
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Each such rule A → C represents the presence of a (potentially) interesting
relationship between the antecedent A and the consequent C, where A is a
conjunction of nominal-valued terms and C is a single nominal valued term1. The
rules are usually presented together with statistics that describe the relationship
between A and C.

2.1 Association Rule Discovery

Association rule discovery [1] is the most widely deployed exploratory rule discov-
ery approach. It grew out of market-basket analysis, the analysis of transaction
data for combinations of products that are purchased in a single transaction.
Association rule discovery uses the so called support-confidence framework. It
finds all rules that satisfy a user-specified minimum support constraint together
with whatever further constraints the user may specify. Essentially, the approach
generates all rules that satisfy the minimum support constraint but discards at
the final stage any rules that fail the further constraints.

Support is the proportion of records in the training data that satisfy both
the antecedent and consequent of the rule.

Initial approaches used a further constraint on minimum confidence. To avoid
potential confusion with the statistical concept of confidence I will hereafter refer
to this metric as strength.

strength = support/coverage (1)

where coverage is the proportion of records that satisfy the antecedent.
More recent approaches typically use a constraint on minimum lift in prefer-

ence to a constraint on strength:

lift = strength/prior (2)

where prior is the proportion of records that satisfy the consequent.
The main mechanism available to control the number of rules that are dis-

covered is the value that is specified for minimum support. However, it is usually
difficult to anticipate which values of minimum support will result in manage-
able numbers of rules. Too large a value will result in no rules. Too small a value
will result in literally millions of rules. In practice there may be a very narrow
range of values of support below which there are extremely few rules discovered
and above which there are too many rules discovered [5].

2.2 K-Most-Interesting Rule Discovery

K-most-interesting rule discovery [2] addresses this problem by empowering the
user to specify both a metric of interestingness and a constraint on the maximum

1 While association rules are often described in terms of allowing C to be an arbitrary
conjunction of terms, in many implementations C is restricted to a single term. In
the current work I follow this practice as it greatly reduces the complexity of the
rule discovery task while satisfying many rule discovery needs.
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number of rules to by discovered. In place of a minimum support constraint, k -
most-interesting rule discovery uses these two pieces of information to prune the
search space. They return the k rules that optimise the interestingness metric
within whatever other constraints the user might specify. It is left up to the user
to specify the interestingness metric, the only constraint on the metric being
that it must define a partial order on a set of rules given a set of data by which
the interestingness of those rules is to be scored.

2.3 Contrast Discovery

Contrast discovery [4] (initially developed under the name emerging pattern dis-

covery [3]) seeks rules that identify conditions whose frequency differs between
groups of interest. It has been shown that this is equivalent to a form of rule
discovery restricted to a consequent that signifies group membership [6].

3 Spurious Rules

A problem for all three of these forms of exploratory rule discovery is that they
suffer a high risk of discovering spurious rules. These are rules that appear
interesting on the sample data but which would not be interesting if the true
population probabilities were used to assess their level interestingness in place
of the observed sample frequencies.

For example, suppose that there is a rule with coverage of one record and a
lift of 2.0. This provides very little evidence that the lift that would be obtained
by substituting population probabilities for sample frequencies would have high
lift as a rule with one record coverage must have either a support of zero or one
record and hence, irrespective of the population lift, the observed lift must either
be 0.0 or 1.0/prior. In other words, when the rule coverage is low, the statis-
tical confidence will be low that the observed relative frequencies are strongly
indicative of the population probabilities.

The support-confidence framework of association rule discovery attempts to
counter this problem by enforcing a minimum support constraint in the expec-
tation that considering only rules with high support will lead to the observed
frequencies being strongly representative of the population frequencies.

4 The Multiple Comparisons Problem

However, this ignores the problem of multiple comparisons [7]. If many obser-
vations are made then one can have high confidence that some events that are
unlikely in the context of a single observation are likely to occur in some of the
many observations that are made. For example, suppose a hypothesis test is
applied to evaluate whether a rule is spurious with a significance level of 0.05.
Consider a spurious rule A → C for which A and C are independent. The proba-
bility that this spurious rule will be accepted as not spurious is 5%. If this process
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were applied to 1,000,000 rules in a context where all rules were spurious (for
example, the data were generated stochastically using uniform probabilities) we
could reasonably expect that 5% or 50,000 would be accepted as non-spurious
despite all being spurious. In practice the rule spaces explored by rule discov-
ery systems are many magnitudes greater than 1,000,000, and hence we should
expect many spurious rules to be generated even if we apply a significance test
before accepting each one.

5 Filters for Spurious Rules

One response to this problem is to apply a correction for multiple comparisons,
such as the Bonferroni adjustment that divides the critical value α by the number
of rules evaluated. This is the approach adopted in the contrast discovery context
by STUCCO [4]. A problem with this approach is that the search process may
require the evaluation of very large numbers of rules and hence α may be driven
to extremely low values. The lower the value of α the higher the probability of
type-2 error, that is, of rejecting rules that are not spurious.

What is required is an approach that minimises the risk of type-1 error,
that is, of accepting spurious rules, without in the process discarding the most
interesting non-spurious rules.

6 Unproductive Rules

A further problem for rule discovery is that of unproductive rules. A rule A →

C is unproductive if it has a generalisation B → C such that strength(A →

C) ≤ strength(B → C). An unproductive rule will arise when a variable that is
unrelated to either B or C is added to B. As the strength is unaltered, the lift
of the unproductive rule will equal that of the generalisation. In practice data
sets often involve many variables that do not impact upon the rules of interest
and hence very large numbers of unproductive rules are generated.

The problem of unproductive rules interacts with the problem of spurious
rules. It is straightforward to add a filter to the rule discovery process that
discards any rule for which the observed strength is not greater than the observed
strength of all its generalisations. However, random variations in the data sample
will lead to almost half the unproductive rules appearing to be productive (albeit
in many cases only very slightly). A statistical test of significance may be applied,
as supported by the Magnum Opus rule discovery system [8], but we again face
the multiple comparisons problem.

7 A New Approach

Hypothesis testing is designed for controlling the risk of type-1 error in the
context of evaluating a prior hypothesis against previously unsighted data. It is
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inadequate to the task of both generating hypotheses and evaluating them from
the same set of data.

An approach that has been used in other data mining contexts is to use a
holdout set for hypothesis testing. Models are inferred from a training set and
then evaluated against a holdout set. My proposal is to utilise this framework in
an exploratory rule discovery context. The available data will be divided into an
exploratory data set from which rules will be discovered. This will be treated as
a hypothesis generation process. The rules discovered are treated as hypotheses
that are then evaluated against the holdout set. As the holdout data is parti-
tioned from the exploratory data, the huge number of rules considered during
rule discovery does not affect the subsequent evaluation. A simple multiple com-
parisons adjustment need only divide the selected alpha value by the number of
rules delivered by the rule discovery phase. Thus the α value need not be set
prohibitively low, minimising the problem of type-2 error.

Note that re-sampling methods, such as cross-validation, that serve to eval-
uate the power of a method for a given set of data are not adequate to this
task. Unlike the case where we wish to predict the likely predictive accuracy of
a single model produced by a system, here we wish to produce many rules. We
want to control the risk of any of these rules being spurious.

I propose the use of k -most-interesting rule discovery for the rule discovery
phase rather than association rule discovery, because it is desirable to find a
constrained number of rules during the rule discovery phase. If too many rules
are discovered the necessary multiple comparisons adjustment will result in a
raised risk of type-2 error. If too few rules are discovered then there is a raised
risk of failing to discover sufficient interesting rules to satisfy the user. Standard
association rule discovery provides only very imprecise control over the number
of rules discovered. Tightening or weakening each of the constraints will respec-
tively decrease or increase the number of rules discovered, but typically it is not
possible to predict by exactly how much a particular alteration to the constraints
will affect the number of rules discovered. In contrast, k -most interesting rule
discovery always returns k rules, except in the unusual circumstance that the
other constraints applied are satisfied by fewer than k rules.

7.1 Selection of Holdout Data

The proposed generic holdout technique is applicable to two different contexts.
In the first context there is a single set of data available, and this data needs
to be partitioned. In this context, it would be appropriate for the data to be
randomly partitioned, a process that can be readily automated. It is probably
desirable that the partitions be of similar sizes. It is important to have as much
data as possible for exploratory rule discovery, so as to generate as powerful
hypotheses as possible. It is also important to have as much holdout data as
possible so as to maximise the power of the statistical tests that are applied.

The second context is one in which there are natural partitions of the data.
For example, data may be obtained over time. In such a context it might be
valuable to utilise the natural partitions so as to evaluate whether the regularities
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apparent in the exploratory partition (such as the data from one year) generalise
across partitions (such as to the next year).

7.2 Holdout Evaluation Tests

For each rule A → C we wish to assess whether the observed strength(A → C) is
significantly higher than would be expected if there were no relationship between
the antecedent and consequent and also whether it is significantly higher than
the strength of all its generalisations2. I use a binomial test to assess whether an
observed strength is signficantly higher than a comparator strength. The large
number of subsets of an antecedent containing many conditions would make test-
ing against all generalisations infeasible. In consequence I test strength(A → C)
against the sample frequency of C (which equals strength(∅ → C)) and against
the strength of all its immediate generalisations (rules formed by removing a
single condition from A). While it is theoretically possible for a rule to have
higher strength than all of its immediate generalisations but lower strength than
a further generalisation, to do so requires a very specific type of interaction
between four or more variables of a form that might make the resulting rule
interesting in its own right despite being unproductive with respect to one of its
generalisations.

8 Evaluation

The Magnum Opus [8] k -most interesting rule discovery system was extended to
support the form of holdout evaluation described above.

I first sought to evaluate what proportion of rules discovered by a traditional
association rule approach to rule discovery might be either spurious or unpro-
ductive. To this end I investigated rule discovery performance on two large data
sets from the UCI repository [9], covtype (581012 records, 10 numeric fields,
41 categorical fields) and census-income (199,523 records, 7 numeric fields, 34
categorical fields). Numeric fields are discretised into three bins, each containing
equal numbers of records.

Each data set was randomly divided into two equal sized subsets, the ex-
ploratory data used to discover rules and the holdout data used for holdout
evaluation.

I started by seeking to find values of minimum support and minimum lift that
resulted in constrained numbers of rules (less than 10,000). After a number of
trials I found for the covtype data that a minimum support of 0.25 and minimum
lift of 2.75 resulted in 1997 rules of which 1936 (96.9%) were rejected by holdout
evaluation. For the census-income data minimum support of 0.4 and minimum
lift of 2.0 resulted in 7502 rules of which 7462 (99.4%) were rejected as spurious
or unproductive when assessed against the holdout data. These figures provide a

2 Actually, as ∅ → C is a generalisation of A → C, the latter condition subsumes the
first.
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dramatic illustration of the degree to which traditional association rule discovery
results may be dominated by rules that are effectively noise.

To separate the issues of unproductiveness from spuriousness, I applied a
filter to discard unproductive rules during the rule discovery phase. That is,
during rule discovery a rule was discarded if it was unproductive as assessed
using the observed strength on the exploratory data without application of a
significance test.

With the same support and lift constraints, for covtype 433 rules were found
of which 377 (87.1%) were rejected by holdout evaluation. Whereas only 40
rules passed the holdout evaluation when the support confidence framework was
employed, when filtering of unproductive rules is added this is raised to 63 rules,
as the number of multiple comparisons is reduced and hence the adjusted α value
used in holdout evaluation is raised.

When a binomial test was applied during rule discovery to evaluate whether
a rule was significantly productive (on the exploratory data), using α = 0.05,
the number of rules found was further reduced to 73 of which 45 (61.6%) were
rejected by holdout evaluation. Note that the number of rules that have passed
the holdout test (18) has decreased. This illustrates the problem of filtering so
as to adequately balance the risks of type-1 and type-2 error. The filter applied
during rule discovery has discarded 45 rules that were found with a weaker filter
and then accepted after holdout evaluation.

Applying yet stronger filters, for example by adjusting for multiple compar-
isons the α used in the statistical test applied during rule discovery, can be
expected to improve the proportion of rules that pass holdout evaluation, but
to decrease the absolute number of rules that pass.

For census-income when unproductive rules were discarded during the rule
discovery phase, 48 rules were discovered of which 8 were rejected by holdout
evaluation. This resulted in the same 40 rules passing holdout evaluation as when
unproductive rules were not discarded during the rule discovery phase. Tighten-
ing the filter applied during rule discovery by adding a significance test resulted
in the discovery of 45 rules of which 5 were discarded by holdout evaluation,
leaving the same 40 rules.

As a final test, I applied k-most-interesting rule discovery in place of the
support-confidence framework. As a measure of interestingness I used leverage,

leverage(A → C) = support/coverage(A) × coverage(C) . (3)

This represents the difference between the observed joint frequency and the
joint frequency that would be expected if the antecedent and consequent were
independent. I sought the 100 rules that maximised this value without any other
constraints other than that all rules had to be significantly productive at the 0.05
level, that is that they had to pass a binomial test at the 0.05 level indicating
that they had higher strength than any immediate generalisation. Note that
this process did not require the time consuming and error prone business of
identifying a suitable minimum support constraint.

For covtype all 100 rules passed the holdout evaluation. All rules found had
extremely high support, the lowest being 0.436. The lowest lift was 2.19. It is
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interesting that the search for the 100 most interesting rules found quite a differ-
ent trade-off between support and lift than I found during my manual attempt
to find a set of constraints that provided sufficiently few rules for consideration,
resulting in rules with higher support but lower lift. It is also notable that all
rules so found passed holdout evaluation, as the search explicitly sought rules
that were most exceptional on the exploratory data and hence the most valuable
to evaluate on the holdout data.

For census-income, of the 100 rules found 13 were discarded by holdout eval-
uation. All rules found had high support, the lowest being 0.413. The lowest lift
of a rule was 1.91. This illustrates the difficulty of finding appropriate constraints
to apply within the traditional association rule framework, as it lay just outside
the minimum lift that I had found after some experimentation in the attempt
to return only a constrained number of rules.

For each data set, the k -most-interesting approach to rule discovery delivered
higher numbers of statistically sound rules without need for manual determina-
tion of appropriate support and other constraints.

9 Conclusion

I have presented an approach to addressing the problems of spurious and un-
productive rules in exploratory rule discovery. Two examples have demonstrated
that over 99% of rules discovered using the support-lift framework can be spuri-
ous or unproductive. I have shown that the use of k -most-interesting rule discov-
ery with holdout evaluation can overcome this problem, delivering for the first
time statistically sound exploratory discovery of potentially interesting rules
from data.
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Abstract. Emerging Patterns (EPs) are itemsets whose supports change 
significantly from one data class to another. It has been shown that they are 
useful for constructing accurate classifiers. Existing EP-based classifiers try to 
use high support-ratio EPs, which may leads to poor generalization capability 
when applied to unseen instances. PNrule is a new two-phase framework for 
learning classifier models in data mining. The first phase detects the presence of 
the target class, while the second detects the absence of the target class. This 
work proposes a novel classification method, called Two-Phase Classification 
by Emerging Patterns (TPCEP), to combine the idea of two-phase induction and 
classification by emerging patterns. Our experiment study carried on 
benchmark datasets from the UCI Machine Learning Repository shows that 
TPCEP performs comparably with other state-of-the-art classification methods 
such as CBA, CMAR, C5.0, NB, and CAEP in terms of overall predictive 
accuracy. 

 Keyword ： Data mining, classification, emerging pattern, two-phase 
classification 

1   Introduction 

Classification is an important data mining problem, and has also been studied 
substantially in statistics, machine learning, neural networks and expert systems over 
decades. In general, given a training dataset, the task of classification is to build a 
concise mode from the training dataset such that it can be used to predict class labels 
of unknown objects. Classification is also known as supervised learning as the 
learning of the model is “supervised” in that it is told which class each training 
example belongs to.  

Classification has a wide range of applications in business, finance, DNA analysis, 
telecommunication, science research and so on. There are many classification models 
proposed by researchers in machine learning, expert systems, statistics, and neural 
networks. Most of these algorithms are memory-based, typically assuming a small 
                                                           
∗ This joint work is supported in part by the Nature Science Foundation of Henan Province of 
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datasets. With the growth of data in volume and dimensionality, it has become a 
challenge to build efficient classifiers for large datasets. Recent data mining research 
focuses on developing scalable classification techniques capable of handing large 
disk-resident data [9]. 

1.1 Background 

The traditional rule-based classifier models are popular in the domain of data mining, 
because humans can easily interpret the rules and the accuracy of the resulting 
classifiers is competitive to other state-of-the-arts. A general rule-based model 
includes a disjunction (union) of rules, where each rule is a conjunction of conditions 
imposed on different attributes. The goal of learning rule-based models directly from 
the training data is to discover a small number of rules to cover most of the positive 
examples of the target class (high coverage or recall) and very few of the negative 
examples (high accuracy or precision) [1]. 

Existing methods of general-to-specific learning techniques, such as C4.5 and 
Ripper, usually follow a sequential covering strategy. Their aim is to build a DNF 
(disjunct normal form) model. Initially, the model contains only the most general rule, 
an empty rule. Specific conditions are added to it progressively. In each iteration, a 
conjunctive rule that can predict the target class with a high accuracy is discovered. 
Then the instances covered by this rule are removed. Only the remaining instances 
will be used in the next iteration. The sequential covering technique works fine but 
may fail in the following two possible scenarios. The first one is when the target class 
signature is composed of the two components, presence of the target class and 
absence of the non-target-class, and the later component is not correctly or completely 
learned. It is referred to as the problem of splintered false positives. The second one is 
the problem of small disjuncts [11], in which rules that cover a small number of target 
class examples are more prone to generalization error than rules covering larger 
number of such examples.  

PN-rule is a new two stage general-to-specific framework for learning classifier 
models in data mining [2]. It is based on both rules that predict presence of the target 
class (P-rules) and rules that predict absence of the target class (N-rules). In the first 
stage, a set of P-rules is learned. They together cover most of the positive training 
instances and each rule covers enough number of instances to maintain its statistical 
significance. The set of P-rules will also cover some negative training instances 
(called false positives) because of the relaxation of accuracy, e.g., accuracy is 
compromised in favour of support. In the second stage, the whole dataset is reduced 
to the union of all true positives and those false positives. On the reduced dataset, N-
rules are learned to remove the false positives. The two-phase technique makes the 
resulting classifier less sensitive to the problem of small disjuncts. A case study on a 
real-life network intrusion-detection dataset shows that the two-phase method 
achieves comparable results with other state-of-the-art classification methods such as 
C4.5 and Ripper and it performs significantly better for rare classes. 
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1.2 Motivation 

Emerging Pattern (EP) is a new kind of knowledge patterns [5], which represents the 
knowledge of sharp differences between data classes. Emerging Patterns are basically 
conjunctions of simple conditions imposed on different attributes. EPs are defined as 
multivariate features (i.e., itemsets) whose supports (or frequencies) change 
significantly from one class to another. The concept of EPs is very suitable for serving 
as a classification model. By aggregating the differentiating power of EPs, the 
constructed classification systems are usually more accurate than other existing state-
of-the-art classifiers. EPs-based classifiers are effective for large datasets with high 
dimensionality because the learning phrase uses efficient algorithms such as border-
based algorithms and tree-based algorithms to discover EPs. EPs-based classifiers 
differ from the rule-based classifiers in that they aggregate the power of many EPs, 
i.e., they consider many combinations of attributes for classification of a test, whereas 
the rule-based classifiers usually use only one rule for one test, i.e., they consider one 
group of attributes.  

The number of EPs present in large datasets may be exponential in the worst case. 
It has been recognized that only a small fraction of the large number of EPs are very 
useful for classification purpose. Recently, a special kind of EPs, called essential 
emerging patterns (eEP), is suggested to be excellent candidates for building accurate 
classifiers [7]. Essential emerging patterns are the most general hypotheses that fit the 
training examples, that is, they are the most minimal itemsets satisfying the 
conditions. Any proper subset of an eEP does not satisfy the conditions. Super sets of 
eEPs are not regarded as essential because Ockham’s razor states that the simplest 
hypothesis consistent with the data is preferred. The set of eEPs is not only high 
quality patterns for classification, but also orders of magnitude smaller than that of all 
EPs. 

 

1.3 Our Work 

In the paper we propose a novel classification method, called Two-Phase 
Classification by Emerging Patterns (TPCEP), which takes advantage of two-phase 
technique and the aggregation strength of EP-based classifiers.  

TPCEP distinguishes itself from other EPs-based classifiers by two-phase induction 
of EPs and a new scoring mechanism. Existing EP-based classifiers such as JEP-C [12] 
usually use EPs with large growth rate because those EPs have very sharp 
discriminating power. However, high growth-rate EPs tend to have low supports and 
even they together cannot cover enough of the training data. This may leads to poor 
generalization capability when applied to unseen instances, i.e., the classifier cannot 
find any EP to classify some tests and it has to “guess” using the majority class, which 
is very unreliable. By two-phase induction of EPs, TPCEP has better generalization 
ability. In the first phase, it finds the set of EPs (called P-eEPs) that have high 
supports and high coverage on the training data. Initially large growth-rate EPs are 
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selected, but later high support EPs are preferred to satisfy the coverage requirement. 
So we relax the strict requirement of large growth-rate EPs. The use of moderate 
growth-rate EPs makes the set of P-eEPs also cover some negative training instances 
(called false positives). The second phase will then try to mine another set of EPs (N-
eEPs), which can remove false positives in the collection of the instances covered by 
the first phase EPs. Here we correct the errors due to the use of EPs whose 
discriminating power are not so sharp. 

Our experiment study carried on 10 benchmark datasets from the UCI Machine 
Learning Repository shows that TPCEP performs comparably with other state-of-the-
art classification methods such as CBA, CMAR, C5.0, NB and CAEP in terms of 
overall predictive accuracy,  
Organization: An outline of the remainder of this paper is as follows. Section 2 
defines the basic conceptions. Section 3 details our TPCEP to use eEPs for 
classification. Section 4 presents an extensive experimental evaluation of TPCEP on 
popular benchmark datasets from the UCI Machine Learning Repository and 
compares its performance with CBA, CMAR, C5.0, NB, CAEP and BCEP. Finally, in 
section 5 we provide a summary and discuss future research issues. 

2. Preliminary 

Suppose a dataset consists of a number of data objects (instances, or examples) of the 
form (a1, a2, …, an) following the schema (A1, A2,…, An), where A1, A2,…, An are 
called attributes. Attributes can be categorical or quantitative. Quantitative attributes 
are discretized by dividing the range of the attribute into intervals and the real data 
values are replaced by interval labels. Each data object in the dataset is also labelled 
by a class label C ∈ {C1, C2,…, Ck} to indicate which class the data object belongs to.  

An item is a pair of the form (attribute-name, attribute-value). Let I be the set of all 
items appearing in the raw dataset. A set X of items is also called an itemset, which is 
defined as a subset of I. Each object in the raw dataset can be represented by an 
itemset. In the association rule context, such an itemset is called a transaction. 
Emerging patterns are defined on the discretized transaction database. We say any 
instance S contains an itemset X, if X ⊆ S. 

Definition 1: The support of an itemset X in a dataset D of datasets, supD(X), is 
countD(X)/|D|, where countD (X) is the number of instances in D containing X, and |D| 
is the total number of instances in D. 

Definition 2:Given two different datasets D’ and D, the growth rate of an itemset X 
from D’ to D is defined as  
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Emerging patterns are itemsets whose supports change significantly from one data 
class to another.  

Definition 3: Given a growth rate threshold ρ >1, an itemset X is said to be an ρ-
emerging pattern (ρ-EP or simply EP) from D’ to D if GRD’→D (X) ≥ ρ.  

When D’ and D are clear from context, an EP X from D’ to D is simply called an EP 
of D. The support of X in D, denoted as sup(X), is called the support of the EP X. 

For example, table 1 shows two EPs between poisonous class and edible class of 
the Mushroom dataset, from the UCI Machine Learning Repository [3], where X = 
{(Bruises, no), (Gill-Spacing, close), (Veil-Colour, white)}, and Y = {(Odour, none), 
(Gill-Size, broad), (Ring-Number, one)}. Both EPs have very large growth rates. As 
an EP of poisonous class, the EP X, with a growth rate of 21.4, is a three-attribute 
feature contrasting the poisonous instances against the edible instances. It has very 
high predictive power: the odd that instances containing (or satisfying) X are 
poisonous is 95.5%. As an EP of edible class, the EP Y has even greater predictive 
power: the odd that instances containing Y are edible is 100%. In fact, Y is a jumping 
emerging pattern (JEP) with support 0 in poisonous class, and not-zero in edible 
class, and thus growth rate ∞. 

Table 1. Examples of Emerging Patterns: two EPs between poisonous class and edible 
class of the Mushroom dataset. 

EP Poisonous Edible Growth-rate 

X 81.4% 3.8% 21.4 
Y 0% 63.9% ∞ 

EPs capture the difference between two data classes on multi-attributes, so they can 
be used as the basic means for classification. By aggregating the differentiating power 
of EPs/JEPs, classification methods such as JEP-Classifier [12], and CAEP 
(Classification by Aggregating Emerging Patterns) [5] usually achieve higher 
accuracy than other state-of the art classifiers such as C5.0. 

2.1 Eessential Emerging Pattern (eEPs) 

Emerging patterns can be described by borders. A collection of sets represented by 
the border <L, R> is 

[L, R] = {Y | ∃X ∈ L, ∃Z ∈ R, X ⊆ Y ⊆ Z}. 

For instance, the border < {{a}, {b, c}}, {{a, b, c, d}}> represents those sets which 
are either supersets of {a} and subsets of {a, b, c, d}, or supersets of {b, c} and 
subsets of {a, b, c, d}. Note that EPs in the left border are the most general or 
minimal, i.e., any training instance covered by EPs in the border will also be covered 
by EPs in the left border.  

There can be a very large number (e.g., 109) of common EPs in the dense and high-
dimensional datasets of typical classification problems. It has been shown that many 
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of them are not so useful in classification [7]. Suppose that X1 and X2 are two EPs, and 
X1 ⊂ X2. X2 is less useful than X1 for classification because every example covered by 
X2 must also be covered by X1. Shorter EPs contains fewer attributes, and tend to have 
larger supports. If we can use a few attributes to distinguish two data classes, adding 
more attributes will not contribute to classification, and in some worse cases, bring 
noise.  

Previous works show that essential emerging patterns are sufficient for building 
accurate classifiers. 

Definition 4: An itemset X is called an essential emerging pattern (eEP) of the target 
class C if it satisfies the following conditions:  

(1) X is an EP of class C with high growth rate ρ, and 

(2) any proper subset of X is not an EP of class C, and 

(3) the support of X in class C is not less than ξ, where ξ is a predefined min-
support threshold. 

eEPs are believed to be the most expressive patterns for classification because of the 
following reasons: 
z Large or even infinite growth rates ensure that each eEP has significant level 

of discrimination. 
z The minimum support threshold makes every eEP cover at least a certain 

number of training instances, because itemsets with too low supports are 
regarded as noise. 

z Supersets of eEPs are not useful for classification because of the following 
reason. Suppose E1 ⊂ E2, where E1 is an eEP. E1 covers more (at least equal) 
training instances than E2, because sup(E1) >= sup(E2). By the definition of 
eEP, both E1 and E2 have large growth rate. So E2 does not provide any more 
information for classification than E1. 

In fact, eEPs are the shortest EPs contained in the left bound of the border 
representing the EP collections, and have at least a certain coverage rate on the 
training dataset. The set of eEPs is much smaller than the set of all common EPs. The 
classifiers based on eEPs is not only more efficient, but also more effective. 

2.2 Tree Based Algorithms for Efficiently Mining eEPs 

Efficient tree based algorithms have been developed to mine essential emerging 
pattern [7]. The tree data structure is called P-tree. Like FP-tree [10], P-tree stores 
compressed all the item information of the training data. Unlike FP-tree, P-tree keeps 
the class attributes information in order to mine EPs. The algorithm adopts the pattern 
fragment growth mining method: it recursively partitions the database into sub-
database according to the patterns found and search for local patterns to assemble 
longer global one. It searches the tree in the depth-first manner; it operates directly on 
the data contained in the tree, i.e., no new nodes are inserted into the original tree and 
no nodes are removed from it during the mining process. The major operations of 
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mining are counting and link adjusting, which are usually less expensive than the 
previous Apriori level-wise, candidate generation-and-test approach.  

The details of these algorithms are omitted here. They can be found in [6,7]. 

3. Two Phase Classification By Emerging Patterns (TPCEP) 

3.1 Basic Ideas 

We use two-class problem to show the basic idea of TPCEP classifier. Suppose the 
two classes are C1 and C2. TPCEP mines eEPs of C1 and C2 in two phases and uses 
these eEPs and their supports to construct classifier of each phase. In the first phase, 
we use all of the training instances to mine eEPs. In the second phase, we focus on 
those instances that are covered by eEPs of the wrong class. For example, eEPs of C1 
from the first phase also cover some instances of C2. Our aim is to mine another set of 
eEPs to identify these “false positives” or “true negatives”. 

When the growth rate threshold ρ is high enough, eEPs of C will cover many 
training instances of C (cover-rate = ξ) and few training instances of non-C. 

3.2 Mine P-eEPs and N-eEPs 

In the first phase, we use all the training instances to generate eEPs of C1 and C2. By 
adjusting min-growth-rate threshold η and min-support threshold ξ, we make the 
eEPs of C1 cover a certain percentage (e.g. 90% or more) of C1. Here we don’t care 
these eEPs’ coverage on C2. Figure 1 (a) expresses the process, where the two 
rectangles show the training instances of C1 and C2 respectively, the instances in the 
light-grey area are those instances that eEPs of C1 covered. The eEPs cover most of 
the instances of C1 and part of instances of C2. Similarly, eEPs of C2 cover many 
instances of C2 while only a few instances of C1.  

The eEPs of C1 (or C2) mined in the first phase are called P-eEPs of C1 (or C2). 
Using the P-eEPs of C1 and C2 mined in the first phase, we can build a single-phase 
classifier. Suppose S is a test instance. Suppose S contains P-eEPs of C1: X11, …, X1m, 
with supports s11,…,s1m respectively; S also contains P-eEPs of C2: X21, …, X2k, with 
supports s21,…,s2k respectively. We use formula (1) (see section 3.3) to calculate the 
similarity rate of C1 and C2 for S, denoted as SR1(S, C1) and SR1(S, C2). The classifier 
of single-phase uses the following rules to classify S: 

If SR1(S,C1) > SR1(S,C2) or ( SR1(S,C1) = SR1(S,C2) and | C1 | ≥ | C2 | ), the 
class label of S will be C1, else be C2. 

Although the single-phase classifier is simple, it achieves good accuracy for 
classification. However, there is much room to improve it by adding the second 
phrase. (See experiment result and analysis) 
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Fig. 1. The training instances used in mining eEPs in two phases. (a) In the first phase, we use 
all the training instances to generate P-eEPs of C1; (b) in the second phase, we only use the 
instances that covered by P-eEPs of C1 mined in the first phase to generate N-eEPs of C1. 

In the second phase, to generate eEPs of C2 (or C1), we only use the instances that 
covered by P-eEPs of C1 (or C2) mined in the first phase. Take mining eEPs of C2 for 
example. Fig.1 (b) shows those instances used in the second phase. Here, we use all 
the instances of C1 and the instances of C2 covered by P-eEPs of C1 to mine eEPs of 
C2. The eEPs of C2 mined here in the second phase are also called N-eEPs of C1, 
because they are “negative” eEPs of C1. Similarly, the eEPs of C1 mined in the second 
phase are also called N-eEPs of C2. 

Now we have P-eEPs (the first phrase) and N-eEPs (the second phrase) for each 
class. In the second phase we pay more attention on the possible misclassification 
than the first phase. Since we have additional EPs mined in the second phrase, we 
need to design a new scoring method to use eEPs of both phases and their supports to 
make a better classification.  

3.3 Scoring function (Calculation of Similarity Rate) 

To classify an unseen instance S, TPCEP needs to calculate a score for each class. The 
class with the highest score is then returned as the classification. The idea behind the 
scoring function is that if the unknown instance S belongs to class Ci, S will be 
“similar” to the instances of Ci. The similarity can be measured using the eEPs of Ci 
that are contained in S. Suppose S contains an eEP of Ci, denoted as E1. E1 has enough 
support, which suggests S is consistent to a reasonable number of instances of Ci on a 
group of attributes. E1 also has large growth rate, which means S is very unlike the 
classes other than Ci. Intuitively, the more percentage eEPs of S cover the instances of 
Ci, the more similar S is to Ci. 

Definition 5: Given a test instance S and a set E(C) of EPs of a class C discovered 
from the training data, the similarity rate of S for C, denoted as SR(S,C),  can be 
calculated using the following steps:  

1. Find the EPs from E(C) which are contained by S, denoted as X1 ,…, Xm.  

2. set count = 0; 

3. for each instance in C, if it contains one EP from X1 ,…, Xm, then count++; 
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4. SR(S,C) = count / the total number of instances of C 

Step 3 counts how many instances of C are covered by the set of EPs X1 ,…, Xm 
collectively. Here we say an instance is covered by the EP set if the instance contains 
one EP from that set. 

We can use the eEPs and their supports to calculate SR(S,C) approximately. Suppose 
S is a test instance and it contains eEPs X1 ,…, Xm, of Ci, where the supports are s1 ,…, 
sm, respectively. Let Ai be the event “Xi appears in the instances of C”. The calculation 
of SR(S,C) is equivalent to the calculation of probability P(A1∪…∪Am). So, we have: 
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3.4 TPCEP Classification 

In training phase, the task of TPCEP classification is to mine eEPs with their supports 
in two phases. eEPs and their supports construct the basis of TPCEP classification.  

Definition 6: Suppose S is an unclassified instances, SR1(S, Ci) is the similarity rate of 
Ci for S using eEPs of  Ci mined in the first phase (i.e., P-eEPs of Ci), and SR2(S, Cj) (j 
≠ i) are the similarity rate of Cj for S using eEPs mined in the second phase (i.e., N-
eEPs of Ci). The score of S for Ci is defined as score(S, Ci) = SR1(S, Ci) - SR2(S, Cj), 
where i, j = 1 or 2, i ≠ j.  

The scoring method considers to use the second phase to correct the errors made in 
the first phrase. 

Given a test instance S, S will be classified as the class with the highest score. That 
is, after TPCEP calculates score(S,C1) and score(S, C2), it uses the following rules to 
decide the class label for S: 

If score(S,C1) > score(S,C2) or score(S,C1) = score(S,C2) and | C1 | ≥ | C2 |, 
the class label of S will be C1, else be C2. 

3.5 Multiple Classes Problem 

TPCEP can be easily extended to k (>2) classes. For a k-class problem, we build k 
classifiers: G1 ,…, Gk. Firstly, we use all the training data and partition it into two 
classes: C1 and non-C1. We build classifier G1 in the first step. Then the whole 
training data is regarded as another two classes: C2 and non-C2 (including C1). In the 
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second step we build the classifier G2. Generally, to build Gi, we divide the whole 
training dataset into two classes: Ci and non-Ci. 

To classify a test S, we use G1 ,…, Gk to decide the class label of S. After 
computing all the scores of S for Ci, we compare the scores and assign S to the class 
with the highest score. 

4.  Experiment Result and Analysis 

In order to investigate TPCEP’s performance compared with that of other classifiers, 
we carry experiments on 10 datasets from UCI Machine Learning Repository. We 
compare TPCEP with other state-of-the-art classifiers: Naive Bayes (NB), the two 
important classifiers based on association rules CBA [14] and CMAR [13], the widely 
known decision tree induction C5.0; an EP-based classifier CAEP; and BCEP, a novel 
Bayes classifier based on emerging patterns.  

Our experiments were performed on a 900Mhz Pentium III PC with 128Mb of 
memory. The programming environment is Microsoft Visual C++. The accuracy was 
obtained by using the methodology of ten-fold cross-validation. We use the Entropy 
method in [8] to discretize datasets containing continuous attributes. Experiment 
results of the competitive classifiers are taken from their original papers. 

Table 2. Summary of the predictive accuracy of of classifiers.  

Dataset Accuracy (%) 
 CBA CMAR NB C5.0 CAEP BCEP TPCEP One-phase 

Adult --- --- 84.12 85.54 83.09 85.00 80.30 78.60 
Australia 84.90 86.10 85.65 84.93 85.51 86.40 89.30 86.97 

Cleve 82.80 82.20 82.78 77.16 82.13 82.41 91.30 86.30 
Diabete 74.50 75.80 75.13 73.03 67.30 76.80 77.30 71.78 
German 73.40 74.90 74.10 71.90 74.50 74.50 73.30 72.08 

Heart 81.90 82.20 88.22 76.30 82.22 81.85 88.93 76.70 
Mushroom --- --- 99.68 100.00 93.91 100.00 99.20 98.70 

Pima 72.90 75.10 75.90 75.39 77.60 75.66 77.70 71.82 
Tic-tac 99.60 99.20 70.15 85.91 85.91 99.37 85.80 77.40 

Vehicle 68.70 68.80 61.12 73.68 68.80 68.05 66.30 --- 
Average   79.69 80.38 80.10 83.00 82.94  

 

Table 2 summarizes the accuracy results. From the table, we can see that TPCEP 
achieves the best accuracy on 5 datasets and also performs well on the other datasets. 
The average accuracy of TPCEP is higher than that of NB, C5.0, and CAEP; and it is 
almost the same as BCEP. The advantage of TPCEP over BCEP is that TPCEP is 
much faster. BCEP is slow because it has to calculate probability approximation using 
many itemsets in a chain of product. TPCEP is fast due to a relatively simple scoring 
function. TPCEP dose not degrade accuracy because two-phrase mechanism can 
correct the errors made by simple scoring to some extend.  

simeon
Australiasian  Data Mining Workshop  ADM03

simeon
20

simeon





Two Phase Classification by Emerging Patterns      11 

Comparing to the CBA and CMAR, two classifiers based on association rules, we 
can see that TPCEP wins on five datasets, Australia, Cleve, Diabete, Heart, Pima, but 
loses on the three datasets, namely, German, Tic-tac and Vehicle. 

In the last column, we give the results obtained by EP-based single-phase 
classification that uses the same scoring function as TPCEP. We can see that single-
phase classifier is fairly good. Further more, we can see that TPCEP wins its single-
phase counterpart on most of the datasets. These experimental results confirm our 
belief that two-phase classification has advantages over one-phase. 

5.  Conclusion 

In the paper, we have proposed a new novel classifier, i.e., Two-Phase Classification 
by Emerging Patterns (TPCEP). TPCEP combines the benefits of two-phase 
classification method and classification by emerging patterns. The first phase of 
TPCEP aims to find the EPs that have high supports and high coverage on the training 
data. Here we alleviate the strict requirement of high support-ratio EPs. The second 
phase will then tries to mine another set of EPs which can remove false positives in 
the collection of the instances covered by the first phase EPs. Here we correct the 
errors due to the use of moderate support-ratio EPs whose discriminating power are 
not so sharp. Our experiment study carried on 10 benchmark datasets from the UCI 
Machine Learning Repository shows that TPCEP performs comparably with other 
state-of-the-art classification methods such as CBA, CMAR, C5.0, NB, CAEP LB 
and BCEP in terms of overall predictive accuracy.  

The factors that can affect the accuracy of TPCEP are the differentiation power of 
EPs and their coverage on data. These factors are represented by two interrelated 
parameters: min-support threshold and min-growth rate threshold. Generally, fixing 
min-support threshold, higher growth rate will result in more discriminating EPs, but 
can reduce coverage on the training data (does not generalize well). Fixing growth 
rate, higher min-support threshold may lead to lower coverage; but when min-support 
is too low, EPs may be not statistically significant and thus the classifier built upon 
them tends to overfit. To select the right values for these thresholds is the art of 
human, guided by trial and error. As the future work, we will go deeper on the 
problem of automatic optimization of the two parameters. 
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Abstract. Text categorization is an important application of machine learning

to the field of document information retrieval. Most machine learning methods
treat text documents as a feature vectors. We report text categorization accuracy
for different types of features and different types of feature weights. We report
the classification result for neural network classification and Support Vector
Machine by using Reuters and Ohsumed collections. We found that SVM is su-
perior to neural network classification in both effectiveness and efficiency. In
our experiments, we did not see any significant improvement for classification
accuracy by using noun-phrase features. The comparison of those classifiers
shows surprisingly that the simply stemmed or un-stemmed single words as fea-
tures give a better classifier compared to other type of features.

1 Introduction

Text categorization is a conventional classification problem applied to the textual do-

main. It solves the problem of assigning text content to predefined categories. As the
volume of text content grows continuously on-line and in corporate domains, text
categorization, acting as a way to organize the text content, becomes interesting not
only from an academic but also from an industrial point of view. A growing number
of statistical classification methods have been applied to text categorization, such as
Naive Bayesian (Joachims,1997), Bayesian Network (Sahami,1996), Decision Tree
(Quinlan,1993;Weiss,1999), Neural Network(Wiener,1995), Linear Regres-
sion(Yang,1992), k-NN (Yang,1999), Support Vector Machines (Dumais,1998;

Joachims, 1998), and Boosting (Schapire,2000; Weiss,1999). A comprehensive com-
parative evaluation of a wide-range of text categorization methods is reported in
ref.(Yang,1999; Dumais,1998) against the Reuters corpus.

Most of the statistical classification methods mentioned above are borrowed from
the field of machine learning, where a classified item is treated as a feature vector. A
simple way to transform a text document into a feature vector is using a “bag-of-
words” representation, where each feature is a single token. There are two problems

associated with this representation.

The first problem to be raised when using a feature vector representation is to an-
swer the question, “what is a feature?”. In general, a feature can be either local or
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global. In text categorization, local features are always used but in different-length

scales of locality. A feature can be as simple as a single token, or a linguistic phrase,
or a much more complicated syntax template. A feature can be a characteristic quan-
tity at different linguistic levels. To transform a document, which can be regarded as a
string of tokens, into another set of tokens will lose some linguistic information such
as word sequence. Word sequence is crucial for a human being to understand a docu-
ment and should be also crucial for a computer. Using phrases as features is a partial
solution for incorporating word sequence information into text categorization. This
paper will investigate the effectiveness of different classifiers by using single tokens,
phrases, stemmed tokens, etc. as features.

The second problem is how to quantify a feature. A feature weight should show the
degree of information represented by local feature occurrences in a document, at a
minimum. A slightly more complicated feature weight scheme may also represent sta-

tistical information of the feature’s occurrence within the whole training set or in a
pre-existing knowledge base (taxonomy or ontology). A yet more complicated feature
weight may also include information about feature distribution among different

classes. This paper will only investigate the first two types of feature weights.

2 From Text to Features

In order to transform a document into a feature vector, preprocessing is needed. This
includes feature formation (tokenization, phrase formation, or higher level feature ex-

traction), feature selection, and feature score calculations. Tokenization is a trivial
problem for white-spaced languages like English.

Feature formation must be performed with reference to the definition of the fea-
tures. Different linguistic components of a document can form different types of fea-

tures. Features such as single tokens or single stemmed tokens are most frequently

used in text categorization. In this bag-of-words representation, information about de-
pendencies and the relative positions of different tokens are not used. Phrasal features

consisting of more than one token are one possible way to make use of the dependen-

cies and relative positions of component tokens. Previous experiments (Sahami,1996;
Dumais,1998) show that introducing some degree of term dependence in the Bayesian

network method will achieve undoubtably higher accuracy in text categorization
compared to the independence assumption in the Naive Bayesian method. However,

whether the introduction of phrases will improve the accuracy of text categorization
has been debated for a long time. Lewis (Lewis,1992) was the first to study the effects
of syntactic phrases in text categorization. In his study, a naive Bayesian classifier

with only noun phrases yielded significantly lower effectiveness than a standard clas-
sifier using bag-of-single-words. More reports on inclusion of syntactic phrases show

no significant improvement on rule-based classifiers (Scott,1999) and naive Bayesian
and SVM classifiers (Dumais,1998). For statistical phrases like n-grams, one report
(Caropreso,2001) shows that certain term selection methods such as document fre-

quency, information gain and chi-square give high selection scores to a considerable

number of statistical phrases, which indicates they have important predictive value. In

the same report, directly using selected uni-grams or bigrams during text categoriza-
tion with the Rocchio classifier yields a slightly higher effectiveness compared to

only using uni-grams in the case that the classifier chooses an adequate but equal
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number of terms as features. A significant drop in effectiveness was observed when

the classifier chose fewer terms. The report then commented that inclusion of some
bigrams may only duplicate information of existing uni-grams but force other impor-
tant uni-grams out. However, other reports on statistical phrases show that the addi-
tion of n-grams to the single words model can improve performance in the shorter-
length n-grams case(Furnkranz, 1998; Mladenic,1998).

One type of a higher level feature has been studied in text categorization (Furnk-
ranz,1998), where linguistic patterns were extracted automatically and input as fea-
tures to naive Bayesian and rule-based classifiers. A consistent improvement in preci-
sion was observed in the naive Bayesian classifier and at low recall level in the rule-
based classifier. Adding linguistic patterns to the single word representation yields
consistent improvement of precision except at a very high recall level.

Feature selection has been studied by (Yang,1997), where information gain and

chi-square methods are found most effective for k-NN and linear regression learning
methods. Term selection based on document frequency in the training set as a whole
is simple but has similar performance to information gain and chi-square methods.

Selected features must be associated with a numerical value to evaluate the impact
of the feature to the classification problem. Most types of feature weighting schemes
in text categorization are borrowed from the field of information retrieval. The most
frequently used weight is TFIDF (Salton, 1988). The original TFIDF is:

f

fdfd
df

D
logtf=ω

(1)

where ω
fd

is the weight of feature f in document d, tf
fd

the occurrence frequency of
feature f in document d, D the total number of documents in the training set, and df

f
is

the number of documents containing the feature f.

In this paper, we will compare text categorization using different types of features,
and different types of feature weighting schemes. The feature types will include single
tokens, single stemmed tokens, and phrases. Weighting schemes will include binary
feature (BI), term frequency (TF), TFIDF(eq.1), logTFIDF(eq.2), etc.

f

fdfd
df

D
log)5.0tflog( +=ω

(2)

We note that the logarithm of the TF part is to amend unfavorable linearity. The
machine learning algorithms we report in this paper include SVM (Joachims, 1998)
and Neural Network. Feature selection in Neural Networks and Support Vector Ma-
chine classifiers is based on document frequency. Only features (single words or
phrases) occurring in an adequate number of training documents will be selected. The
corpus includes reuters-21578 and ohsumed.
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3 Phrase Features

We only use training set documents to find valid phrases. We first scan the documents
in the training set and detect phrases based on linguistic and statistical conditions. We

only use noun phrases as valid phrases. Valid phrases are inserted into a phrase data-
base which is specific to the training set. The phrase database is used to replace the
phrases in the training documents and test documents with specific tokens. For exam-
ple, the phrase "information retrieval" in the document will be changed to the token
"information_retrieval". After phrases in the documents are marked, the documents
can be input into tokenization program in training or classification processes for per-
formance testing.

To detect valid noun phrase chunking, Brill’s transformation-based part of speech
tagger (Brill, 1995) was used to mark parts-of-speech in the training documents.
Training documents with POS tags are input into Ramshaw&Marcus’s noun phrase
chunking detector (Ramshaw,1995) for noun phrase detection. The resultant noun
phrase chunks are output to a file, which is input to a statistical chi-square test pro-

gram. This program tests the statistical significance of co-occurrences of the compo-
nent tokens in n-gram noun phrases. In particular, we choose the noun phrases
(ngrams, up to 4-grams) such that the null hypothesis that its component tokens are
independent of each other can be proved not true.

4 Machine Learning Algorithms

We test two different type of machine learning algorithms: Neural Networks and
Support Vector Machines. We use the SVM_light package (Joachims, 1998) with de-

fault parameter settings, which results in a linear SVM classifier.
For Neural Network, we use a home-made program. The Neural Network has no

hidden layer and therefore is equivalent to a linear classifier. Text document classifi-
cation has high dimensional data characteristics because of the large size of natural
language vocabulary. Documents in one class usually can be linearly separated from
other classes due to high dimensionality (Joachims,1998;Schutze,1995). A prior ex-
periment (Schutze, 1995) shows that linear neural networks can achieve the same ac-
curacy as non-linear neural networks with hidden layers.

During the learning process, a sequential back propagation algorithm is used to
minimize training error. We use cross-entropy error, thus making our learning method
equivalent to logistic regression learning (Schutze, 1995). We tried to use weight
regularization methods (Zhang, 2001) to deal with overfitting, but the accuracy was

not improved and convergence is hard to achieve by using back propagation learning.
The results we present in this paper do not use regularization.

5 Corpus

The evaluation experiments are done on two text collections. The first is Reuters-

21578 with ModApte split. Many text categorization methods have been tested

simeon
Australiasian  Data Mining Workshop  ADM03

simeon
26



against this corpus (Yang,1999; Dumais,1998; Joachims,1998). This is a collection of

newswire stories from 1987 compiled by David Lewis. The number of distinct tokens
in the training set is 39189, of which 18586 tokens occur more than once, 12951 to-
kens occur more than twice, 10328 tokens occur more than three times, 8789 tokens
occur more than four times, and 3262 tokens occur more than 20 times in the training
set.

The second collection is taken from Ohsumed corpus used in the Filtering Track in
TREC-9 (Robertson,2000). The Ohsumed collection consists of Medline documents
from the years 1987-1991 and a set of topics and relevance judgments. In order to re-
duce the size of the problem, we chose MESH categories in which the number of Oh-
sumed documents in 1991 is larger than 300 (which results 98 categories). The train-
ing/testing split is across the document series number 91250000. Training documents
have the document series number less than 91250000. This split results in 14655

training documents and 6698 test documents. The resultant training set and testing set
have more homogenous distribution across different categories than the Reuters col-
lection. The minimum (maximum) number of training documents in one category is
65 (465). The minimum (maximum) number of testing documents in one category is
29(214). In the training set, there are 52162 distinct tokens, of which 28857 tokens
occur more than once, 22128 tokens occur more than twice, 18493 tokens occur more
than three times, 9224 tokens occur more than 12 times, and 3458 tokens occur more
than 60 times.

6 Experiment Results and Discussion

We first compare the impact of different feature types. The meaning of the following
legends in the figure denote feature types: “single words” means only single tokens as

features, “noun phrases” uses detected noun phrases as features without using compo-

nent tokens, “stem words” uses Porter-stemmer-determined stems for each token as
features, “noun phrases and words” uses detected noun phrases and their component

tokens.

Fig.1 and Fig.2 show the micro-average breakeven points (BEP) with different
numbers of features using the SVM classifier to classify the Reuters and ohsumed

corpora, respectively. Breakeven accuracies increase with the number of features.
There is no overfitting observed in the experimental range as the number of features

increases. The maximum number of features in Fig.1 is 16000 for Reuters. This num-
ber of single tokens is roughly the number of tokens occurring twice or above in the
training set. The maximum number of features in Fig.2 is 20000 for ohsumed. This

number of single tokens is roughly the number of tokens occurring three times or
above in the training set.

The maximum BEPs are achieved at the maximum number of features. For reuters,
the best BEP is 0.88, which is slightly higher than the reported microAvg. BEP in
(Joachims, 1998) (0.860). For ohsumed, the best BEP is 0.602, achieved by using

stem words.

The effect of stemming can be easily seen in Fig. 1 and 2. When the number of fea-

tures is small, the coverage of selected features is poor but stemming of words can in-
crease the feature coverage, thus giving the best breakeven accuracy compared to

other types of features. However, as the number of chosen features increases, and
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coverage of the chosen features becomes large enough, the accuracy of the features in

conveying the information becomes more important. This can be seen in Fig.1 where
the BEPs of other types of features are as good as stem words at large number of fea-
tures.
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Fig. 1. Breakeven points for the Reuters collection using SVM. The feature vector

is normalized to have unity sum. The feature weight is LOGTFIDF.
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It is interesting to see how well the automatically determined noun phrase features

perform. The Fig.1 and Fig. 2 show that noun phrases classifiers give the worst BEP.
This is disappointing. It was expected that good phrase features provide more accurate
information by constraining the meaning of component words. One example is the
phrase “consumer price index”, where the combination of the three token means a

specific index. However, this result is consistent with the findings of the previous lit-

erature (Lewis,1992; Scott,1999; Dumais,1998). This can be partially explained by
decreased feature coverage due to replacement of original tokens by phrases. For ex-

ample, if the two words “oracle database” are replaced by one phrase “ora-

cle_database”, this phrase feature will only match itself and can not convey any simi-
larity with its individual word components “oracle” and “database”. However, we

know that an article discussing enterprise software may only mention “oracle” or “da-
tabase” separately. Another example is replacing the two phrases “Oracle database”

and “DB2 database” with two separate features makes it impossible to map the simi-
larity existing between them. Thus each phrase will have narrower coverage. The
coverage problem is caused by replacing a number of token features with a single fea-

ture which is more accurate but finer. This problem can be partially reduced by not

eliminating the phrase’s component words. In fig.1, we see a significant increase of

BEP for noun phrases including component words.
The single words are natural linguistic units and are employed by many text classi-

fication systems. From Fig.1 and Fig.2, one can see that this natural and simple fea-

ture unit performs fairly well compared with other complicated types of features.
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Fig. 3. Breakeven points for the Reuters collection using Neural Network. The feature vector is

normalized to have unity sum. The feature weight is LOGTFIDF
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The above results and discussion about types of features are not just applied to a

single machine learning algorithm (SVM in Fig.1, Fig.2). We performed the same ex-
periments with a Neural Network classifier. The results are shown in Fig.3 and Fig.4.
The BEPs using Neural Network are not as good as those using SVM. The maximum
BEP using Neural Network is 0.871 for Reuters using single words and 0.568 for oh-
sumed using stem words. It is worthwhile to mention that the training time for the
neural network is much longer than SVM (>10 times in this experiment’s problem
scale).
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Fig. 4. Breakeven points for the ohsumed collection using Neural Network. The feature vector

is normalized to have unity sum. The feature weight is LOGTFIDF

So far, the discussed results all use one feature weighting scheme: LOGTFIDF (eq.
2). In Fig.5, Fig.6, we employed different feature weighting schemes. They are:

− IDF: log(D/df
f
)

− TF: tf
fd

− TFIDF: eq. 1

− LOGTFIDF: eq. 2

− LOGTF: log(tf
fd
)

− BINARY: 1 or 0
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Although the BEP ranking sequence for different weighting schemes is different

for Fig.5 and Fig.6, we still can find some common characteristics for weighting
methods based on the results vs. the Reuters and ohsumed collections. One can ob-
serve that the BEPs using LOGTF weight are always larger than those using TF
weight. This shows that non-linear weighting of term frequency is better than conven-
tional linear weighting. We think that this observation also holds in the field of infor-
mation retrieval for relevance ranking.

Fig.5 and Fig.6 show that IDF weighting is better than BINARY weighting. Be-
cause IDF weight is only assigned to a feature occurring in the concerned document,
IDF weight is actually BINARY weight multiplying an IDF score which contains the
statistical information of the feature inside the whole corpus. Considering the fact that
TFIDF is better than TF, LOGTFIDF better than LOGTF, one can than conclude that
introducing the corpus information helps improve the accuracy of text categorization.

It is seen from Fig.5 and Fig.6 that LOGTFIDF, which is the multiplication of the
LOGTF and IDF weights, performs the best in both collections.
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7 Conclusions

We have compared text classifiers using different types of features and different
weighting schemes. In order to achieve a generic conclusion regarding the feature
preparation independent with machine learning algorithms, we employed Support
Vector Machines and a Neural Network algorithm as two machine learning classifi-
ers. We tested these classifiers on the Reuters and ohsumed collections. Based on this
comparison, we find that SVM algorithm is superior to the linearized neural network
both in accuracy and training speed. Stem words, which normalize different feature
forms to one stem form, show significant advantages in the case where a small num-
ber of features are used because of the larger coverage of the stems. Replacing con-
tiguous tokens with detected noun phrases as features gains accuracy but loses cover-

age due to the problem of normalization. One may surmise that if a similarity match
between different features is introduced to replace the current binary match between
two features, the feature normalization problem will be eliminated. Single words as
features perform fairly well. The comparison of different weighting schemes shows
LOGTFIDF as the preferred feature weighting method.
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Abstract. The development of microarray technology has enabled the
states of entire genomes comprising tens or hundreds of thousands of
genes to be measured in controlled experiments. The computational in-
ference of genetic regulatory networks is a rapidly emerging area of bioin-
formatics which requires the application of techniques from statistics and
data-mining to microarray data. A key problem is that the underlying
biological systems are believed to be quite complex, and may incorpo-
rate many genes at various times, although often there are relatively few
samples in each experiment. This paper describes recent experiments
in automatically constructing quantitative gene interaction models from
microarray data. The approach is based on earlier work on behavioural
cloning, where reactive agents are learned from the logged data of skilled
human operators controlling a complex dynamic system. In behavioural
cloning the task of controlling the system is decomposed into that of
learning individual agents for the the control of a particular variable.
Combining the agents results in a strategy for the successful control of
the overall system. In this paper selected target genes are treated as
agents and tree-structured models are applied to learn regulatory depen-
dencies from a benchmark data set. We describe some interesting aspects
of the approach and outline directions for extending the work, including
the design of an interactive system for biologists to use these machine
learning methods in exploratory data analysis.

1 Introduction

The increasing availability of technology to accomplish large scale assays is
rapidly moving biological data analysis requirements into the area of experi-
mental “systems” biology. This presents a challenge to devise methods suitable
for discovery of biological knowledge from such data resources. It also makes
available a role for the practice of data mining and machine learning alongside
more traditional hypothesis testing methodologies in biology.

Genome-wide measurement of the activity of regulatory networks in cells is
now possible using the technology of DNA microarrays [2]. Such snapshots can
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be combined to enable inference from data of the causal relationships between
genes controlling the processes in living cells. Knowledge of such properties holds
tremendous promise. For example, it may aid in understanding fundamental bio-
logical processes such as the cell life cycle. The effect on genes of drug treatments
or environmental factors, or the role of genes in diseases such as cancer can also
be investigated by these methods.

2 Biological background

This section provides a brief review of the general problem of the underlying
biological systems of interest, how they might be modelled, and how such models
might be learned.

2.1 Regulation in biological systems

Microarray technology allows experimental evaluation not of what constitutes
the genome (the full complement of genetic information of the organism) or even
the proteome (the protein-coding regions of the genome) but the transcriptome
(the population of mRNA transcripts in the cell weighted by their expression
levels) [7]. The complexity of biological systems arises from the differential ex-
pression of genes which results in the variation of gene products (such as pro-
teins) available to participate in cell function. Typically only a small fraction
of genes in a genome are expressed at any one time. Protein synthesis incurs
an energy cost, so unnecessary gene expression is inefficient. The main stages in
gene expression and their points of regulation are shown in Figure 1.

So far our description of gene expression has left out many important de-
tails. The key point, however, is that the process is regulated to maintain the
required concentrations of proteins (and other biochemical compounds) in the
cell. Regulation of the initiation of transcription in particular allows the syn-
chronised expression of multiple gene products on which the control of cellular
processes depends. The relationships involved in such regulatory dependencies
are typically very complex. The interaction between protein and DNA involves a
region called a promoter to which regulatory proteins bind. Once the appropri-
ate proteins, called transcription factors, are bound as a transcription complex,
the transcription of the gene can begin, shown in Figure 2

Biological activity in cells can thus be viewed in terms of systems of inter-
related molecular compounds undergoing self-regulation. Control is achieved by
pathways of regulatory dependencies. The effect of transcription regulation can
be positive, to activate transcription, or negative, to suppress it. Through evo-
lution these systems have developed to sustain the cell in an environment, so
regulation must not only control the internal operation but also the movement
of compounds in and out from the extracellular region. These metabolic and
signalling processes also have an effect on the expression of genes.
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Fig. 1. Gene expression. In this example two genes (dark regions on the DNA) are
transcribed into RNAs then translated into proteins. These gene products contribute
to cellular effects, including possible regulation of transcription and translation

2.2 Microarray technology

The basis of microarray technology is in the ability of DNA and RNA to bind
together in complementary strands (for example in the well-known double he-
lix). Essentially, microarrays are constructed for a set of probes, complementary
to a set of genes, such as the genome of an organism. These probes are bound
to the surface of the array. When a sample containing genetic material (DNA
or RNA) is introduced, the probes on the array will bind to the complementary
nucleotide chain by a process called hybridization. With suitable marking, usu-
ally a fluorescent chemical, the intensity of the binding of the different probes
can be measured.

The expression level as measured by this intensity (actually derived by pro-
cessing an image of the entire array) is taken to indicate the amount of transcrip-
tion of the corresponding genes in the biological system from which the sample
was extracted. In turn, this is taken to indicate the protein concentration. A
further complication is that expression levels can be estimated as ratios of two
measurements, for example from two samples under different conditions.

2.3 Modelling cellular systems

As noted above, the advent of microarrays and other “high-throughput” forms
of technology for biological analyses is leading to a shift of approach in exper-
imentation. In the past a typical focus would be to test hypotheses applying
to a single gene or gene product at a time. A picture of the underlying system
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would have to be built up step-by-step. Now it is possible to test all of the genes
for their activity as part of entire biological systems. In terms of computational
biology, this leads ultimately to the modelling in silico of cells or even complete
“virtual organisms” [5, 10].

Fig. 2. Transcription factors bind to promoter regions singly or as a complex of several
proteins to initiate transcription of a gene.

It is possible to separate the goals of simulation and identification in mod-
elling. By simulation is meant running a computational model of some physical
system, such as a cell or an oil refinery, with some given inputs to generate some
behaviour of interest, such as a prediction of the chance of an explosion, or the
response to a particular drug. In contrast identification is in some sense the in-
verse of simulation. It is less common and usually much harder; given some data
about the behaviour of some physical system, e.g. inputs and outputs, generate
a model to explain this behaviour and accurately predict other new behaviours
of interest.

However, at the systems level such models become extremely complex. Both
simulation and identification are required. Simulation models the entire system
to generate predictions for empirical testing. Identification enables the automa-
tion of model construction given empirical data from the system. The domain
specialist’s understanding of the system is thus encoded in the model. In order
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to ensure confidence in the model, the formalism must be adequate with respect
to both simulation and identification.

Fig. 3. Schematic diagram of the yeast cell cycle (modified from [3]). Actively dividing
yeast cells must undergo DNA synthesis/replication (S phase) before mitosis/cell divi-
sion (M phase). The S and M phases are separated by two “gap” phases (G1 and G2).
Four different methods (cdc28, cdc15, alpha factor and elutriation) were used to arrest
the cell cycle and synchronise yeast cell cultures at specific points of the cell cycle. The
cells were then released from arrest and mRNA levels were measured at multiple time
points for each group of synchronised cells [17]. The time-series data used in the present
study was generated by sampling mRNA levels every 10 minutes for 300 minutes after
cdc15 synchronisation.

Take an organism like E. coli where considerable knowledge has been accu-
mulated on its molecular biology. This knowledge can be expressed in the form
of a metabolic network, i.e. a labelled graph, where the vertices represent chem-
ical compounds and the edges biochemical reactions. At a more abstract level,
with a knowledge of the complete genome of E. coli, and data on proteins which
have an effect on, say, the transcription of other proteins, we again construct
a graphical representation of this biological system. In both cases, the dynamic
nature of the underlying systems to be modelled leads to graphs being a natural
formalism for the modelling task [9].

2.4 Learning system models

The task of inferring complete models of biological systems from data becomes
overwhelming in the sample complexity due to the number of parameters. To deal
with this problem a number of strategies have been adopted, such as restricting
the class of models which can be learned [11], learning features common to sets

simeon
Australiasian  Data Mining Workshop  ADM03

simeon
39

simeon





6

of models [6] and learning with background knowledge containing known path-
ways [4]. In this paper we adopt an approach developed for learning to control
dynamical systems, such as flight simulators, known as behavioural cloning.

Behavioural cloning is a machine learning technique which has been suc-
cessfully used to construct control systems in a number of domains [12, 15, 18].
Clones are built by recording the performance of a skilled human operator and
then running an induction algorithm over the traces of the behaviour. The most
basic form of behavioural cloning results in a set of situation-action rules that
map the current state of the process being controlled to a set of actions that
achieve some desired goal.

In [1] this was generalised to include a method of learning goals, or reference
values, which hold in a particular context, in addition to causal effects which
result from applying certain control actions. This allows learning feedback control
models from data. Recently this approach has been used to learn PID control
rules directly from data [8].

Behavioural cloning is an appropriate framework for learning from microarray
data since the cells from which the data are obtained can be viewed as dynamical
systems under self-regulatory control. This is the same situation which holds
when learning from behavioural traces in which one agent controls a plant or
system. In the case of a human pilot controlling a flight simulator, the agent
is external to the system being controlled. However, viewing the genome as in
some sense the controller of the cellular system, clearly the controller is integral
to the environment.

Experience with machine learning applications to behavioural cloning has
demonstrated some advantages when dealing with data from complex systems.
First, in behavioural cloning the task of controlling the system is broken down by
selecting target variables to be controlled. Predictive models are learned for the
behaviour of these variables. Second, the models are then embedded in agents
dedicated to the control of a particular variable. Combining the agents results in
a strategy for the successful control of the overall system. These points should
enable modelling the combined activity of transcriptional regulation in the cell
for a given set of experimental data. Third, using symbolic machine learning
methods has the advantage that models mapping states to actions can be read-
able, allowing a degree of user insight into the dynamics of system control. This
property is an advantage for biologists wishing to avoid “black-box” models.

3 Learning from microarray data

In this paper we adopt the behavioural cloning approach to learning causal
dependencies within a complex system, namely the relationships in expression
levels detected in a microarray experiment.

3.1 Learning models for individual genes

The approach taken is to decompose the problem of learning models of systems
behaviour into learning models of individual “agent” behaviour given that of
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other relevant agents. In this paper we consider as relevant agents all genes in
the genome, although in fact there will only be data on those in the transcriptome
under any given set of experimental conditions.

YAL002W <= 0.015 :

| YBR002C <= 0.015 : YDR054C = 0.368

| YBR002C > 0.015 : YDR054C = 0.772

YAL002W > 0.015 :

| YAL041W <= -0.035 : YDR054C = -0.392

| YAL041W > -0.035 : YDR054C = -1.04

YAL002W (VPS8): membrane-associated hydrophilic protein which contains a C-
terminal cysteine-rich region that conforms to the H2 variant of the RING finger
Zn2+ binding motif

YBR002C (RER2): cis-prenyltransferase
YAL041W (CDC24): guanine nucleotide exchange factor (a.k.a. GDP-release factor)

for cdc42

Fig. 4. Regression tree for YDR054C (CDC34): E2 ubiquitin-conjugating enzyme.

Following from recent work on behavioural cloning [8] we select model trees
as our representation. Tree-structured classifiers are efficient algorithms with a
strong but effective bias, namely to prefer small trees. In the microarray appli-
cation this means preferring to minimise the number of genes in a tree.

Regression or model trees are suitable for numerical prediction. This means
there is no pre-discretisation required. They give a piecewise linear approxi-
mation to the unknown gene expression function. This means that non-linear
regulation effects can be modelled. Since this approach is intended as a tool for
exploratory data analysis, using tree-structured models is appropriate since they
amenable to inspection and straightforward interpretation, i.e., not a “black-
box”.

3.2 An experiment on yeast expression data

The method adopted was to select a subset of genes of interest and try to predict
their expression from the expression levels of the other genes.

A benchmark time series data set [17] and subset of genes of interest was
selected [16]. The sample was taken from asynchronous cultures of the same
cells growing exponentially at the same temperature in the same medium. A
diagram of the cell-cycle is in Figure 3.

This data set contains measurements from four different experiments. Each is
referred to by the name of the method used to synchronise the cycles of all cells
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in the experiment. We used the CDC15 dataset which has the largest number of
data points. The remaining datasets will be used as part of future work.

Fig. 5. The inverse relationship between target gene YDR054C (solid line) and
YAL002W (dotted line). This pattern is captured by the top-level of the tree in Fig-
ure 4.

The microarray measurements were background corrected signal log ratios
(see [17] for details), although this is not the only type of microarray measure-
ment to which our methods are applicable. However, proper normalisation of the
data should be undertaken to make measurements compatible over samples.

The approach taken requires selection of a number of genes as target genes
for which trees are to be constructed.

For each gene 4 the following method was used to prepare the training data.
Let X be a gene-expression matrix, and xi,j the expression level of gene i in
sample j. For time series experiments, as in this case, each sample is taken at a
separate time point. However, the approach is also applicable to non-time series
data. A single example in the training set has the form

xi,j ←

∧

k 6=i

xk,j

4 Standard ORF identifiers are used.
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That is, the expression level of the target gene i in sample j depends on the
conjunction of the expression levels of all other genes in sample j.

Examples in this format consist of an output variable (the expression level
of the target gene) and a set of input variables (the expression levels of the
remaining genes). An example in this format is generated for each sample in
the experiment. A different set of examples if generated for each of the selected
target genes.

Following the framework of [16] a set of twenty target genes selected known
to be involved in cell cycle regulation was selected. It is worth noting that the
whole genome could be taken as the set of target genes, although this would
obviously generate a large number of trees.

For each of the target genes a tree-structured classifier was induced. We
generated both regression trees and model trees [14] using the Weka machine
learning toolkit [19]. Regression and model trees fit the data as decision trees but
with a continuous “class” or output variable at the leaves of the tree. They differ
as follows. Regression trees contain a single value at each leaf node, typically the
mean of the output variable for all examples in that leaf. Model trees contain a
linear regression model at each leaf node, fitted to the examples in that leaf.

Decision trees were also generated, using the binary classification ‘up-’ or
‘down-regulated’. Default parameter setting were used throughout. All runs were
of 10-fold cross-validation on the entire training set.

3.3 Results and discussion

Correlation of actual and predicted values for each 10-fold cross-validation were
obtained for model and regression trees. Predictive accuracy (1 - classification
error) for decision trees was also obtained. These results are summarised in
Table 1.

The results in terms of predictive accuracy are quite mixed. Some of the
predictions appear to be quite accurate. These may also be showing interesting
causal relationships, although this has yet to be evaluated. For other target genes,
it is unlikely that any significant regulatory relationships have been uncovered.

Model trees seem to be the most accurate method. Decision trees are the
most compact, often with only a single node. Regression trees are positioned
in the middle; without the linear regression models in the leaves they are more
compact than the model trees, and they contain more dependencies between the
target and other genes than the decision trees. However, the data set is very
small, particularly considering the number of genes. Further experiments with
more data are necessary, since the methods may well be overfitting.

In terms of exploratory data analysis, the results are encouraging. Although
we have not been able to verify any of the relationships appearing in the trees,
some of the interactions are plausible. More work is needed for this.

As expected, the tree methods seem to be picking out a small number of genes
for each target gene to predict its expression level. An example is the regression
tree in Figure 4. This expresses a simple putative regulatory relationship which
can be summarised as follows. If the gene YAL002W is down-regulated then
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Table 1. Cross-validation results for target gene prediction (N = 20).

Decision Trees Regression Trees Model Trees
Accuracy No. of trees Correlation No. of trees Correlation No. of trees

≥ 90% 3 ≥ 0.9 0 ≥ 0.9 1
≥ 80% 4 ≥ 0.8 2 ≥ 0.8 2
≥ 70% 12 ≥ 0.7 5 ≥ 0.7 8
≥ 60% 15 ≥ 0.6 8 ≥ 0.6 11
≥ 50% 20 ≥ 0.5 10 ≥ 0.5 13

≥ 0.4 16 ≥ 0.4 17
≥ 0.3 16 ≥ 0.3 17
≥ 0.2 16 ≥ 0.2 18
≥ 0.1 17 ≥ 0.1 19
≥ 0.0 18 ≥ 0.0 19
· · · · · · · · · · · ·

≥ -0.3 20 ≥ -0.3 20

Mean = 72.29% Mean = 0.46 Mean = 0.57

(in general) the target gene YDR054C is up-regulated, and vice-versa. There
is a further level of refinement, however, which is that gene YBR002C will up-
regulate YDR054C if it is itself up-regulated; also gene YAL041W will down-
regulate gene YDR054C if it is itself up-regulated. This example illustrates how
positive and negative conditional dependencies can be encapsulated in a simple
tree. The top level inverse regulatory relationship between genes YAL002W and
YDR054C is shown by plotting the raw data in Figure 5.

A combination of using tree representations and simple plots provides a
source of information on the behaviour of the underlying system. This would
not be the case with simply clustering genes.

An additional feature of the approach is that model trees for each of the
target genes can be combined to provide a simulation of the subsystem defined
by those genes, as outlined in Section 2.4. Causal dependencies between target
genes occur when one target gene appears as an attribute in the tree for another
target gene. This situation is shown in Figure 6.

In our experiment this was observed for the gene SKP1 which was included
as an attribute in regression and model trees for target gene SWI4. It is likely
that other such dependencies would be uncovered with a larger set of target
genes. This will be investigated as part of further work.

3.4 Related work

There has been a significant amount of work on applications of machine learn-
ing to microarray data (see [13] for an overview). Many applications are of a
preliminary nature. It is not yet apparent that any single technique has a clear
advantage on microarray data.
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Fig. 6. The target gene D of the tree on the left appears as an attribute in the tree for
target gene E on the right. Trees combined in a network showing only gene interactions.

The most common technique is still clustering, such as hierarchical clustering.
With appropriate transformations of the data, such as a Fourier-type analysis to
detect periodicities in time series data [17], clustering can be extremely useful.
However, it is still restricted to grouping together similar examples in terms of a
pre-defined similarity measure. For example, the disjunctive structure of context-
dependent relationships found in tree-structured classifiers evident in Figure 4
may be a better fit for certain regulatory interactions. Although more complex
distance functions may be defined for clustering, this places a burden on the
user, and it may be difficult to know ahead of time what the “correct” distance
function might be.

A well-known problem is dealing with the large number of genes in microarray
data, particularly since the number of samples is usually small. As costs reduce
over time, data sets may include many more samples. However, the main problem
to be solved by machine learning algorithms on such data is to select the genes
with important relationships and eliminate the redundant genes from the model.

In learning Bayes nets from expression data [6] this selection is on the basis
of a statistical score which ranks genes for inclusion in the network. At each step
in an iterative procedure the number of possible genes which can be added to
the network is limited to a threshold k ≪ n, where n is the number of genes.

Our work is more closely related to that of [16] in which decision-tree learning
was applied to expression data for a number of selected target genes. Here the
problem is similar to that of learning Bayes nets; for a given gene, how to select
a subset of genes from the entire genome to be included in the tree. This is
achieved by the tree-construction algorithm, which greedily selects a gene for
inclusion in the tree by ranking each candidate in terms of its relationship to the
target gene (by information gain, or standard deviation reduction, etc.) without
the requirement of a threshold k.
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Fig. 7. Bioinformatics tool to support biologists in exploratory microarray data analy-
sis. Annotation is used to extend the representation and formulate new learning tasks.

In contrast to [16] we avoid pre-discretisation of the expression levels of the
genes by using regression and model trees. Thus the learned model includes
quantitative values for the output variable, which can be important in showing
the relation between expression levels at different nodes of a tree.

Lastly, it is interesting to note that with such tree-based methods the set of
target genes could be all of the genes in the genome. Although this would lead
to a large number of trees being learned, this could be done in parallel. Since
tree construction is efficient, this may not require excessive computation. We
may assume therefore that the approach may be quite scalable (given suitable
parallel processing resources), although this has not been tested. However, the
question of interpretability for such a large set of models is likely to become
much more important.

4 Bioinformatics tools for biologists

A major advantage of our approach over currently used clustering methods is the
extraction of explicit rules from the data, that can be further investigated and
verified by domain experts. The techniques described in this paper can therefore
be incorporated into a tool for biologists to explore the results from microarray
experiments in an interactive fashion. We are currently developing such a tool
in collaboration with a group of experimental biologists. The goal is to provide
the user with an easy way to select target genes, launch analyses, and identify
“interesting” relationships in the resulting trees.
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In order to facilitate this exploration, the user interface should display not
only the relationships in terms of gene names, but also annotate these results
with relevant known attributes for the genes. These attributes include attributes
of the gene itself (location on the chromosomes, relevant patterns in the sur-
rounding DNA sequences) as well as attributes of its encoded protein (functional
category, cellular localisation, known interaction partners etc). Combining the
relationships predicted by the data mining techniques with an integrated view
of these attributes should greatly facilitate the examination of the results and
their evaluation and exploration by domain experts.

The exploration tool (see Figure 7) therefore incorporates a series of agents
for retrieving the relevant attributes from various Internet data sources as re-
quired, and integrating these attributes with the data mining output. The explo-
ration tool should also allow the user to combine multiple classifiers to construct
a gene network, using both computational predictions and their own domain
expertise. The exploration tool (see Figure 7) should include the following com-
ponents:

– Database for storing microarray data
– Data mining tools
– Graphical user interface for
– Browsing through the microarray experiments
– Selecting target genes
– Launching analyses
– Displaying “annotated” trees
– Combining trees into networks
– Agents for querying local and external annotation sources and collating and

formatting the retrieved annotations

The exploration tool should allow the domain experts to make immediate use
domain experts to make immediate use of the classification methods for generat-
ing scientific hypotheses that can be validated experimentally. It will also allow
a direct, subjective evaluation of the predictions by the domain experts. Further
developments of this tool can include the automatic capture of the biologist’s
patterns of use, which could be used as the basis for the development of a more
automated expert system for exploring microarray data.

5 Conclusions and further work

This is preliminary work and it is too soon to draw firm conclusions. Never-
theless there seem to be some promising aspects to our initial results. First, the
approach of treating the problem as one of learning control rules for an unknown
system is appealing. This allows a simple decomposition of the overall system,
which makes learning models more efficient. These individual predictive models
can be combined for system-level behaviour. The approach has been extensively
investigated in the area of behavioural cloning, and this has resulted in many
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refinements such as learning feedback control rules, learning reference values for
steady-state systems and a wide range of representations and learning methods.

Second, the use of symbolic machine learning methods which can fit quite
complex, non-linear functions using simple structures has many advantages. The
models are not black-boxes, which is important for biologists. They can be used
for prediction and explanation. Overall, they have much more to offer than
clustering, which has been the most commonly used method for applications
to microarray data.

Third, as more information sources are available to include in training sets
for model construction, both in the form of additional microarray data and
other data such as sequence and interaction data, it should be straightforward
to extend this approach. It is likely that more interactive stages in the learning
will help to guide this process.

On the other side of the balance sheet there are a number of drawbacks.
There is currently no way to obtain estimates of the statistical significance of
the models learned by our methods. Although ultimately biological significance
is more important than statistical significance, and it is well-known that statis-
tical significance does not always imply biological significance, and vice versa,
nonetheless it is important for data mining and machine learning practitioners
to address this requirement. Possible directions include both theoretical devel-
opments based on the algorithms used, and empirical methods of significance
estimation.

Much more work needs to be done to apply these approaches to more data.
This includes: running these methods on many more target genes in a data set
and comparing the output models; testing the predictive accuracy of the models
on several data sets; applying the methods on microarray datasets other than the
benchmark sets; validation of the predictions in terms of biological significance.

In summary, we fully expect the challenges of microarray data mining to
lead to extensions to or new developments of machine learning methods, and to
greatly improve our understanding of what is required for them to be successful
on these large-scale biological data sets.

Acknowledgements. Thanks to Claude Sammut, Andrew Isaac, Ian Dawes,
Geoff Kornfeld and Rohan Williams for helpful discussions on these topics.
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Abstract. The integration of data mining techniques with classification problems relies on the success 
in the mining of interesting knowledge patterns during the learning phase of the classifiers. This paper 
proposes a new kind of patterns for the classification over quantitative data in high dimensional 
database, which is called MOUCLAS (MOUntain function based CLASsification) Patterns, based on the 
concept of the fuzzy set membership function which gives the new approach a solid mathematical 
foundation and compact mathematical description of classifiers, and integrating classification and 
clustering and association rules mining to identify interesting knowledge in the databases. The 
framework of the paper is formed by concentrating on three major issues of classification: the definition 
of the new MOUCLAS patterns, the algorithm for the discovery of the MOUCLAS patterns, and the 
construction of new classifiers. 

 
1       Introduction and Motivation 
 
An increasing part of research in the data mining communities focuses on the task of classification, in 
addition to three other tasks: generation of association rules, clustering, and concept description. Data mining 
based classification aims to build accurate and efficient classifiers not only on small data sets but more 
importantly also on large and high dimensional data sets, while the widely used traditional statistical data 
analysis techniques are not sufficiently powerful for this task [12], [13].  
 
The use of association rules to discover dependencies among data [2] has been extensively studied in both the 
database and data mining communities for a long time, with major studies in [3], [4], [5], [15], [17], [21], 
[23], [25], [27], [29], [30], and [33]. With the development of new data mining techniques on association 
rules, new classification approaches based on concepts from association rule mining are emerging. These 
include such classifiers as ARCS [20], CBA [18], LB [22], CAEP [10], etc., which are different from the 
classic decision tree based classifier C4.5 [24] and k-nearest neighbor [6] in both the learning and testing 
phases.  
 
ARCS [20] demonstrated the successful application of concepts of clustering for the purpose of 
classification. However, ARCS is limited to 2D-rules based classifiers of the format A ∧  B ⇒  Classi, where 
A and B are two predicates. It uses the method of “Binning” to discretize the value of quantitative attributes. 

Consequently, the accuracy of ARCS is strongly related to the degree of discretization used. A non-grid-

based technique [26] has been proposed to find quantitative association rules that can have more than two 

predicates in the antecedent.  The authors noticed that the information loss caused by partitioning could not 

be ignored and have tried to employ a measure of partial completeness to quantify the information lost, but 

the measure is still constrained by the framework of binning. Though there are several excellent 

discretization algorithms [11], [8], a standard approach to discretization has not yet been developed.  

Different approaches could lead to different collections of large itemsets even with respect to the same 

support threshold in a given data set. ARCS and the non-grid-based technique lead to research question 1 

being addressed: “Is it possible that an association rule based classifier can be developed for quantitative 

attributes by the concepts of clustering which can overcome the limitation caused by the discretization 

method? ” CBA [18] gives us an interesting indication that the idea of apriori property can be applied to a set 

of predicates (itemsets) for classification.  Suppose an association rule based classifier in the form of A1 ∧  A2 

∧  … ∧  Al ⇒  Ci, where Aj (j=1, …, l) are predicate variables, Ci is the class label, the antecedent of the rule is 

a frequent itemset. This raises question 2: “If an association rule based classifier can be built based on the 

concept of clustering, is it possible that a link between CBA and ARCS can be found so that an association 

rule based classifier with any number of predicates in the antecedent can be setup by clustering? ” 

 

The above research issues establish a challenge that comes within our research focus. In this paper, we 

present a new approach to the classification over quantitative data in high dimensional databases, called 

MOUCLAS (MOUntain function based CLASsification), based on the concept of the fuzzy set membership 

function. It aims at integrating the advantages of classification, clustering and association rules mining to 

identify interesting patterns in selected sample data sets.  
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2       Problem Statement 
 
We now give a formal statement of the problem of MOUCLAS Patterns (called MPs) and introduce some 
definitions. The MOUCLAS algorithm, similar to ARCS, assumes that the initial association rules can be 
agglomerated into clustering regions, while obeying the anti-monotone rule constraint. Our proposed 
framework assumes that the training dataset D is a normal relational set, where transaction d ∈  D. Each 
transaction d is described by attributes Aj, j = 1 to l. The dimension of D is l, the number of attributes used in 
D. This allows us to describe a database in terms of volume and dimension. D can be classified into a set of 
known classes Y, y ∈  Y. The value of an attribute must be quantitative. In this work, we treat all the attributes 
uniformly. We can treat a transaction as a set of (attributes, value) pairs and a class label. We call each 
(attribute, value) pair an item. A set of items is simply called an itemset.  
 
Since CBA indicates the feasibility of setting up a link between association rule and classification and ARCS 
proves that the idea of designing a classification pattern based on clustering can work effectively and 
efficiently, we design a MOUCLAS Pattern (so called MP) as an implication of the form: 

Cluster(D)t → y, 
where Cluster(D)t is a cluster of D, t = 1 to m, and y is a class label. The definitions of frequency and 
accuracy of MOUCLAS Patterns are defined as following: The MP satisfying minimum support is frequent, 
where MP has support s if s% of the transactions in D belong to Cluster(D)t and are labeled with class y. The 
MP that satisfies a pre-specified minimum confidence is called accurate, where MP has confidence c if c% 
of the transactions belonging to Cluster(D)t  are labeled with class y.   
 
Though framework of support – confidence is used in most of the applications of association rule mining, it 

may be misleading by identifying a rule A ⇒ B as interesting, even though the occurrence of A may not 

imply the occurrence of B. This requires a complementary framework for finding interesting relations. 

Correlation [15] is one of the most efficient interestingness measures other than support and confidence. Here 

we adopt the concept of reliability [34] to describe the correlation. The measure of reliability of the 

association rule A ⇒ B can be defined as: 

reliability    R(A ⇒ B) = 
)(

)(
AP

BAP ∧
− ( )BP  

Since R is the difference between the conditional probability of B given A and the unconditional of B, it 

measures the effect of available information of A on the probability of the association rule. Correspondingly, 

the greater R is, the stronger MOUCLAS patterns are, which means the occurrence of Cluster(D)t more 

strongly implies the occurrence of y. Therefore, we can utilize reliability to further prune the selected 

frequent and accurate and reliable MOUCLAS patterns (MPs) to identify the truly interesting MPs and make 

the discovered MPs more understandable. The MP satisfying minimum reliability is reliable, where MP has 

reliability defined by the above formula. 

 
Given a set of transactions, D, the problems of MOUCLAS are to discover MPs that have support and 

confidence greater than the user-specified minimum support threshold (called minsup) [4], and minimum 

confidence threshold (call minconf) [4] and minimum reliability threshold (call minR) respectively, and to 

construct a classifier based upon MPs. 

 

3       The MOUCLAS  Algorithm  
 

The classification technique, MOUCLAS, consists of two steps:  

1. Discovery of frequent, accurate and reliable MPs. 

2. Construction of a classifier, called De-MP, based on MPs. 

 

The core of the first step in the MOUCLAS algorithm is to find all cluster_rules that have support above 

minsup. Let C denote the dataset D after dimensionality reduction processing. A cluster_rule represents a 

MP, namely a rule:  

cluset → y, 

where cluset is a set of itemsets from a cluster Cluster(C)t, y is a class label, y ∈  Y. The support count of the 

cluset (called clusupCount) is the number of transactions in C that belong to the cluset. The support count of 

the cluster_rule (called cisupCount) is the number of transactions in D that belong to the cluset and are 

labeled with class y. The confidence of a cluster_rule is (cisupCount / clusupCount) × 100%. The support 

count of the class y (called clasupCount) is the number of transactions in C that belong to the class y. The 

support of a class (called clasup) is (clasupCount / |C |) × 100%, where | C | is the size of the dataset C.  
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Given an MP, the reliability R can be defined as: 

R(cluset → y) = (cisupCount / clusupCount) - (clasupCount / |C |) × 100% 

 
The traditional association rule mining only uses a single minsup in rule generation, which is inadequate for 
many practical datasets with uneven class frequency distributions. As a result, it may happen that the rules 
found for infrequent classes are insufficient and too many may be found for frequent classes, inducing 
useless or over-fitting rules, if the single minsup value is too high or too low. To overcome this drawback, we 
apply the theory of mining with multiple minimum supports [32] in the step of discovering the frequent MPs 
as following. 
 
Suppose the total support is t-minsup, the different minimum class support for each class y, denoted as 
minsupi can be defined by the formula: 

minsupi = t-minsup × freqDistr(y) 
where, freqDistr(y) is the function of class distributions. Cluster_rules that satisfy minsupi are called frequent 
cluster_rules, while the rest are called infrequent cluster_rules. If the confidence is greater than minconf, we 
say the MP is accurate.  
 
The first step of the MOUCLAS algorithm works in three sub-steps, by which the problem of discovering a 
set of MPs is solved: 

Algorithm: Mining frequent and accurate and reliable MOUCLAS patterns (MPs) 

Input: A training transaction database, D; minimum support threshold (minsupi); minimum confidence 
threshold (minconf) 

Output: A set of frequent, accurate and reliable MOUCLAS patterns (MPs) 

Methods: 
(1) Reduce the dimensionality of transactions d, which efficiently reduces the data size by removing 

irrelevant or redundant attributes (or dimensions) from the training data, and  

(2) Identify the clusters of database C for all transactions d after dimensionality reduction on attributes Aj in 
database C, based on the Mountain function, which is a fuzzy set membership function, and specially 
capable of transforming quantitative values of attributes in transactions into linguistic terms, and  

(3) Generate a set of MPs that are both frequent, accurate and reliable, namely, which satisfy the user-
specified minimum support (called minsupi), minimum confidence (called minconf) and minimum 
reliability (called minR) constraints. 

In the first sub-step, we reduce the dimensionality of transactions in order to enhance the quality of data 
mining and decrease the computational cost of the MOUCLAS algorithm. Since, for attributes Aj, j = 1 to l in 
database, D, an exhaustive search for the optimal subset of attributes within 2l possible subsets can be 
prohibitively expensive, especially in high dimensional databases, we use heuristic methods to reduce the 
search space. Such greedy methods are effective in practice, and include such techniques as stepwise forward 
selection, stepwise backward elimination, combination of forwards selection and backward elimination, etc. 
The first sub-step is particularly important when dealing with raw data sets. Detailed methods concerning 
dimensionality reduction can be found in [9], [19], [28], [16]. 
 
Fuzzy based clustering is performed in the second sub-step to find the clusters of quantitative data. The 
Mountain-climb technique proposed by R. R. Yager and D. P. Filev [31] employed the concept of a mountain 
function, a fuzzy set membership function, in determining cluster centers used to initialize a Neuro-Fuzzy 
system. The substractive clustering technique [7] was defined as an improvement of Mountain-climb 
clustering. A similar approach is provided by the DENCLUE algorithm [14], which is especially efficient for 
clustering on high dimensional databases with noise. The techniques of Mountain-climb clustering, 
Substractive clustering and Denclue provide an effective way of dealing with quantitative attributes by 
mountain functions (or influence functions), which has a solid mathematical foundation and compact 
mathematical description and is totally different from the traditional processing method of binning. It offers 
us an opportunity of mining the patterns of data from an innovative angle. As a result, question 1 presented in 
the introduction can now be favorably answered. 
 

The observation that, a region which is dense in a particular subspace must create dense regions when 
projected onto lower dimensional subspaces, has been proved by R. Agrawal and his research cooperators in 
CLIQUE [1]. In other words, the observation follows the concepts of the apriori property. Hence, we may 
employ prior knowledge of items in the search space based on the property so that portions of the space can 
be pruned. The successful performance of CLIQUE has again proved the feasibility of applying the concept 
of apriori property to clustering. It brings us a step further towards the solution of problem 2, that is, if the 
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initial association rules can be agglomerated into clustering regions, just like the condition in ARCS, we may 
be able to design a new classifier for the purpose of classification, which confines its search for the classifier 
to the cluster of dense units of high dimensional space. The answer to question 2 can contribute to the third 
sub-step of the MOUCLAS algorithm, i.e., the forming of the antecedents of cluster_rules, with any number 
of predicates in the antecedent. In the third sub-step, we identify the candidate cluster_rules which are 
actually frequent and accurate and reliable. From this set of frequent and accurate and reliable cluster_rules, 
we produce a set of MPs.  
 
Let I be the set of all items in D, C be the dataset D after dimensionality reduction, where transaction d ∈  C 
contains X ⊆  I, a k-itemset. Let E denote the set of candidates of cluster_rules, where e ∈  E, and F denote the 
set of frequent cluster_rules. The first step of the MOUCLAS algorithm is given in Figure 1 as follows. 
 
1 X = reduceDim (I); // reduce the dimensionality on the set of all items I of in D 
2 Cluster(C)t = genCluster (C); // identify the complete clusters of C  
3 for each Cluster(C)t do 
       E = genClusterrules(cluset, class); // generate a set of candidate cluster_rules  
4     for each transaction d ∈  C do  
5         Ed = genSubClusterrules (E, d); // find all the cluster_rules in E whose cluset are supported by d 
6         for each e ∈  Ed do 
7             e. clusupCount++; // accumulate the clusupCount of the cluset of cluster_rule e 
8             if d.class = e.class then e.cisupCount++ // accumulate the cisupCount of cluster_rule e supported 

by d 
9         end 
10   end 
11   F = {e ∈  E | e.cisupCount ≥  minsupi }; // construct the set of frequent cluster_rules 
12   MP = genRules (F); //generate MP using the genRules function by minconf and minR 
13 end 

14 MPs =  MP; // discover the final set of MPs  
 

Figure 1: The First Step of the MOUCLAS Algorithm 
 
The task of the second step in MOUCLAS algorithm is to use a heuristic method to generate a classifier, 
named De-MP, where the discovered MPs can cover D and are organized according to a decreasing 
precedence based on their confidence and support. Suppose R be the set of frequent, accurate and reliable 
MPs which are generated in the past step, and MPdefault_class denotes the default class, which has the lowest 
precedence.  We can then present the De-MP classifier in the form of  

<MP1, MP2, …, MPn, MPdefault_class>, 

where MPi ∈  R, i = 1 to n, MPa MPb if n ≥ b > a ≥ 1 and  a, b∈  i, C ⊆   cluset of MPi,.  

 

The second step of the MOUCLAS algorithm also consists of three sub-steps, by which the De-MP classifier 

is formed: 

Algorithm: Constructing De-MP Classifier 

Input: A training database after dimensionality reduction, C; The set of frequent and accurate and reliable 

MOUCLAS patterns (MPs) 

Output: De-MP Classifier 

Methods: 
(1) Identify the order of all discovered MPs based on the definition of precedence and sequence them 

according to decreasing precedence order. 

(2) Determine possible MPs for De-MP classifier from R following the descending sequence of MPs.  

(3) Discard the MPs which cannot contribute to the improvement of the accuracy of the De-MP classifier 

and keep the final set of MPs to construct the De-MP classifier. 

 

In the first sub-step, the MPs are sorted in descending order, which has the training transactions surely 

covered by the MPs with the highest precedence when possible in the next sub-step. The sort of the whole set 

of MPs is performed following the definition of precedence as in CBA:  

Given two MPs, we say that MPa has a higher precedence than MPb, denoted as MPa �MPb, 

if ∀  MPa, MPb ∈  MPs, it holds that: the confidence of MPa is greater than that of MPb, or if their confidences 

are the same, but the support of MPa is greater than that of MPb, or if both the confidences and supports of 

MPa and MPb are the same, but MPa is generated earlier than MPb. 
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In the second sub-step, we test the MPs following decreasing precedence and stop the sub-step when there is 
no rule or no training transaction. For each MP, we scan C to find those transactions satisfying the cluset of 
the MP. If the MP can correctly classify one transaction, we store it in a set denoted as L. Those transactions 
satisfying the cluset of the MP will be removed from C at each pass. Each transaction can be identified by a 
unique ID. The next pass will be performed on the remaining data. A default class is defined at each scan, 
which is the majority class in the remaining data. At the end of each pass, the total number of errors that are 
made by the current L and the default class are also stored. When there is no rule or no training transaction 
left, we terminate this sub-step. After this sub-step, every MP in L can correctly classify at least one training 
transaction in C.  
 
In the third sub-step, though we would like to find as many MPs as possible to give good coverage of the 
training transactions in the second sub-step, we prefer strong MPs which have relatively high support and 
confidence, due to their characteristics of corresponding to larger coverage and stronger differentiating 
power. Meanwhile, we hope that the De-MP classifier, consisting of a combination of strong MPs, has a 
relatively smaller number of classification errors, because of greedy strategy. In addition, the reduction of 
MPs can increase the understandability of the classifier.  Therefore, in this sub-step, we identify the first MP 
with the least number of errors in L and discard all the MPs after it because these MPs produce more errors. 
The undiscarded MPs and the default class corresponding to the first MP with the least number of errors in L 
form our De-MP classifier. 
 
The second step of the MOUCLAS algorithm is shown in Figure 2. 
 
1 R = sort(R); // sort MPs based on their precedence  
2 for each MP∈  R in sequence do 
3     temp = ∅  ; 
4     for each transaction d ∈  C do 
5        if d satisfies the cluset of MP then 
6            store d.ID in temp; 
7            if MP correctly classifies d then  
8               insert MP at the end of L; 
9           delete the transaction who has ID in temp from C;  
10         selecting a default class for the current L; // determine the default class based on majority class of                         
                                                                                    remaining transactions in C 
11    end 
12    compute the total number of errors of L; // compute the total number of errors that are made by the 
                                                                             current L and the default class  
13 end 
14 Find the first MP in L with the lowest total number of errors and discard all the MPs after the MP in L; 
15 Add the default class associated with the above mentioned first MP to end of L; 
16 De-MP classifier = L 

 
Figure 2: The Second Step of the MOUCLAS Algorithm 

 
In the testing phase, when we classify a new transaction, the first MP in De-MP satisfying the transaction is 
used to classify it. In De-MP classifier, default_class, having the lowest precedence, is used to specify a 
default class for any new sample that is not satisfied by any other MPs as in C4.5[24], CBA[18].  
 
4       Example of MOUCLAS Application 
 
Oil/gas formation identification is a vital task in the petroleum industry, where the petroleum database 
contains such records (or attributes) as seismic data, various types of well logging data (e.g. GR, DEN, CNL, 
Resistivity, BCSL, etc.), and physical propertiy data (e.g. porosity, permeability, etc.), whose values are all 
quantitative. An illustration of using well logging date for purpose of oil/gas formation identification is 
illustrated in figure 3. One transaction of the database can be treated as a set of the items corresponding to the 
same depth and a class label (oil/gas formation or not). A hypothetically useful MP may suggest a relation 
between petroleum data at a certain depth and the class label of oil/gas formation. In this sense, a selected set 
of such MPs can be a useful guide to petroleum engineers to identify possible drilling targets and their depth 
and thickness at the stage of exploration and exploitation.  
 
The notable advantage of MOUCLAS over more traditional processing techniques such as seismic inversion 
is that a physical model to describe the relationship between the seismic data and the property of interest is 
not needed; nor is an very precise understanding of the phases of the seismic data. From this point of view, 
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MOUCLAS provides a complementary and useful technical approach towards the interpretation of petroleum 
data and benefits petroleum discovery. 

 
Figure 3: Quantitative Petroleum Data Suitable for MOUCLAS Mining 

(note: the dashed lines indicate the location of oil formations) 
 
5       Conclusion 
 
We have introduced a new type of classification patterns, the MOUCLAS Pattern (MP), for quantitative data 
in high dimensional databases. We have also proposed an algorithm for discovering the interesting MPs and 
construct a new classifier called De-MP. As a hybrid of classification, clustering, and association rules 
mining, our approach may have several advantages which are that (1) it has a solid mathematical foundation 
and compact mathematical description of classifiers, (2) it does not require discretization, as opposed to 
other, otherwise quite similar methods such as ARCS, (3) it is robust when handling noisy or incomplete data 
in high dimensional data space, regardless of the database size, due to its grid-based characteristics, (4) it is 
not sensitive to the order of input items and it scales linearly with the size of the input.  
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Abstract. As a result of the inability of computer systems to under-
stand abstract concepts, data mining algorithms do not generally con-
strain the generation of rules to those that are of interest to the user
adequately. Interactive knowledge discovery techniques aim to alleviate
this problem by involving the user in the mining process, so that the
user’s broader understanding of abstract semantic concepts and domain
knowledge can guide the discovery process, resulting in accelerated min-
ing with improved results. At present this is done largely through data
visualisation techniques and to a lesser degree through rule visualisation.
This paper discusses some of the current research in interactive data min-
ing research and argues that the next stage after rule visualisation is the
interactive user manipulation of the mining process - Guided Knowledge
Discovery. The paper also introduces two unique visualisation tools –
the CARV hierarchical association rule mining visualisation tool and the
INTEM sequential pattern rule visualisation tool.

Additional Keywords: Interactive data mining.

1 Introduction

Although computer based, the knowledge discovery process is human-centric be-
cause of its reliance upon the user’s involvement in both mechanistic aspects such
as data selection and preparation, and in aspects involving quantitative judge-
ment such as analysis and interpretation of the results. Using current techniques,
the user is involved within all stages of the discovery process, with the excep-
tion of the analysis1 stage, which remains a ‘black box’. This analysis stage uses
data mining algorithms to explore a dataset and discover patterns or structures,
which are influenced by user specified constraints and objective measures of in-
terestingness. To date, data mining research has focused mainly upon heuristic
correctness and efficiency. In interactive data mining, the process is extended to

1 For convenience we use the CRISP nomenclature (Chapman, Kerber, Clinton,
Khabaza, Reinartz & Wirth 1999)
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investigate ways in which the user can become an integral part of the mining
process. The need for user inclusion is based on the premise that the concept of
interestingness is subjective, and cannot therefore be fully defined in heuristic
terms. This suggests that by extending data mining algorithms to incorporate
subjective measures of interestingness (through user participation), more useful
results will be produced. The collaboration between computer and human will
result in a symbiosis; the computer will provide processing power and storage
facilities, and the user will contribute such capabilities as understanding and
perception.

This paper investigates interaction techniques that allow the user to actively
guide the knowledge discovery process, in effect overcoming the computer’s in-
ability to incorporate knowledge about intangible subjective measures such as
domain knowledge and data semantics. In addition to producing more interest-
ing results, guidance of the mining process implies that the algorithm can be
dynamically constrained during processing (to reduce the breadth or depth of
analysis), hence reducing both mining time and result set size.

There are two classes of data mining tasks: directed and undirected. Directed
mining, also known as supervised learning or predictive analysis, refers to a group
of methods that build a model based upon a set of data and make predictions
about new items based on this model. Undirected mining, also known as unsu-
pervised learning or explorative analysis, employs techniques that are used to
discover patterns, unknown or theorised by the user. Interactive mining can only
be applied to the explorative tasks such as clustering and association mining;
as directed mining tasks such as classification and characterisation are guided
through training sets of data.

This paper explores the techniques available for visualisation of and inter-
action with undirected knowledge discovery systems. Section 2 builds toward a
discussion on interactive data mining by outlining the need for human participa-
tion within the knowledge discovery process. This is followed by a discussion of
presentation paradigms in Section 3, highlighting both the strengths and weak-
nesses of textual and graphical methods. Section 4 contains a comprehensive
taxonomy of undirected mining presentations, including the presentation of hi-
erarchical, temporal and spatial semantics. Section 5 looks at interaction and,
more specifically, direct manipulation techniques and the creation of interaction
mappings. The section also provides a discussion about interactive views and dis-
tortion, which are two common interaction-based methods used to alleviate some
of the problems incurred through the presentation of large complex datasets in
coordinate space. Finally Section 6 discusses the current state of interactive data
mining and the few relevant tools that are available, and Section 7 provides a
brief look at the future directions of interactive data mining research.

2 User Participation

Computers process data at a syntactic level only. For example, a computer has
little understanding of the semantics behind the string book and therefore which
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is the correct interpretation for a particular instance. For the correct semantic
interpretation the computer needs to understand the context in which the term is
presented. An accurate comprehension of complex context is beyond the ability of
computers at present. The inability of the computer to understand is significant
to data mining and the knowledge discovery process, as the objective is to find
patterns of interest.

Identifying what is of interest is non-trivial and much research has been done
within this field (Hilderman & Hamilton 1999, Piatetsky-Shapiro 1991, Silber-
schatz & Tuzhilin 1996). There are two classes of measures of interestingness:
objective and subjective. Objective measures are based upon heuristics, where
the interestingness of the pattern is defined objectively based upon a function of
the discovered pattern and its associated data. Piatetsky-Shapiro (1991) formally
describes this function as follows.

Definition 1 The objective interestingness of a rule X → Y is defined as a

function of f(X), f(Y ) and f(XY ), where f(k) is the probability that k is true.

However, objective measures fail to capture all the characteristics of pattern
interestingness as heuristic measures are logically constrained (Silberschatz &
Tuzhilin 1996). An item of interest is one that incorporates characteristics of
novelty, complexity, focus and usefulness. From this definition it is apparent
that patterns cannot be classed as interesting through an analysis of a pattern’s
structure alone, but must also incorporate subjective measures.

Subjective measures of interestingness depend not only upon the structure of
the rule and the underlying data but also upon the user’s interpretation of the
pattern’s representation. For example, one characteristic of an interesting rule
is that it must be goal-oriented; satisfaction of this characteristic is based upon
an understanding of the mining task goals. For example, if a user is trying to
justify additional department funding, a pattern indicating a trend in increasing
employee height would not be useful. Subjective interpretation provides semantic
understanding of patterns because users have the ability to comprehend data
semantics and relate them to the problem domain. This builds upon the concept
of knowledge-based architectures for Human Computer Interaction (HCI), which
have explored the possibility of an implicit communication channel that, in an
abstract sense, provides the computer with knowledge of the problem domain
and objectives (see Figure 1) (Dix, Finlay, Abowd & Beale 1998).

Data mining algorithms can generate a large number of patterns, most of
which are of no interest to the user. It is therefore essential to incorporate both
subjective and objective measures of interestingness into the mining process,
constraining the algorithm to an extent where only the most interesting pat-
terns are generated. The inclusion of subjective measures requires the user to
actively participate in the data mining process, creating synergy through an
understanding of the data, that will result in the discovery of a more concise
set of interesting rules and probably decrease mining time. Participation may
also promote better work ethics due to what is known as the Hawthorne Effect,
which states that people tend to work harder when they sense that they are par-

ticipating in something new or in something in which they have more control
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Fig. 1: Knowledge Based HCI

(Mayo 1945). In order for the user to participate in the mining process there
must be mechanisms in place to provide for this functionality. Such mechanisms
include:

– One or more interfaces between the user and the mining process.
– A cause and effect mapping between interaction primitives and mining pro-

cess manipulation.
– Mining algorithm extensions allowing for guidance of the processing through

human interaction.

3 Presentation

The acquisition of knowledge derived from a set of data requires a presentation
of the data’s underlying structure to the user. The most common method is
visual presentation, which is the focus of this section. However there is current
research into the auditory presentation of data and the benefits of combining
auditory with visual presentations (Barass 1995). There are two classes of visual
presentation: textual and graphical. Textual presentation methods are simpler
but more constrained. Graphical techniques are more difficult to implement but
show more promise as they facilitate discovery through incorporating human
perception in a less constrained manner.

Textual presentations are constrained to a set of well defined primitives (char-
acters, symbols and mathematical operators), which are interpreted by the user
in a sequential manner at a fine-grained level of detail, with each primitive exam-
ined in turn. For example, reading is a sequential low level interpretation of the
symbols on a page. The benefit of this presentation style is that it is recognised
and perceived in the same way by different users and is relatively quick and easy
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to produce. A drawback for textual presentations is that they are not conducive
to the analysis of patterns, complex data or large data sets, all of which are key
characteristics of useful data mining results.

Graphical methods or visualisations of mining results provide more powerful
forms of presentation as they are not constrained to a pre-specified set of primi-
tives. Graphical presentations take many different forms, as the underlying data
can be mapped to many different types of graphical primitives such as position,
shape, colour and size. Such diversity leads to individual visualisations being
able to present many dimensions of data in a concise manner by mapping data
dimensions to varied graphical primitives. By contrast, in textual presentations
the data dimensions are mapped to the same textual primitive type.

Human Perception and Information Theory (Miller 1956) indicates that graph-
ical presentation facilitates the search for patterns by harnessing the capabilities
of the human visual system to elicit information, through visualisation, multi-
dimensional perception, recoding, and relative judgement. Many experiments
within the field of cognitive psychology have identified that regardless of sen-
sory type (eg. sight, taste, and smell), humans can accurately perceive differ-
ences in the stimuli to a greater extent when many parameters of that stimuli
are presented. For example, in experiments by Garner et al. (Garner, Hake &
Erikson 1956), participants were presented with a series of single dimension stim-
uli in the form of images each showing a point at a different position on a line.
Participants were asked to label each image either from a list of possibilities
or with a number from 0 to 100 indicating where to the best of their judge-
ment the point lay on the line. Results showed that on average humans could
accurately perceive approximately 10 different placements. However in experi-
ments where the visual stimulus was increased to two dimensions (Klemmer &
Frick 1953) by the presentation of a point within a square, the level of percep-
tion rose to approximately 25 different placements. Multi-dimension perception
thus suggests that graphical presentations will improve user perception due to
their multi-dimensional nature. However, the relationship between dimensional-
ity and perception has been found to be asymptotic. Above ten or so dimensions,
addition of further dimensions does not improve perception (Miller 1956).

Recoding is the process of reorganising information into fewer chunks with
more information within each chunk. This process is the means by which hu-
mans extend short-term memory. The concept of recoding suggests that it is
more difficult to perceive patterns within textual presentations because of the
fine-grained sequential interpretation required. This is not conducive to pattern
perception as the logical units remain small, resulting in the inability to under-
stand the underlying structure of the result set. Visual presentations present a
more contiguous representation of the data that can often be interpreted as a
single logical unit, providing a conducive means by which the overall structure
of the data set may be examined.

Weber’s Law states that the likelihood of detection [of a change] is propor-
tional to the relative change, not the absolute change of a graphical attribute.
This law indicates that a user’s perception will be superior when relative judge-
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ment instead of absolute measurement is made. For example, it is easier to
perceive the change in a graphical object if its original form is displayed with
the newly modified representation because we can compare the difference or rel-
ative change between the two objects, whereas it is more difficult to perceive
changes when the original object is replaced by the new because no comparison
is available and reliance is instead placed upon the knowledge of the object’s
absolute measures.

Relative judgement is a graphical capability and is a major strength of graph-
ical presentations as it allows the users to obtain a holistic qualitative view of
the result set where relative differences between items can be recognised. This
qualitative view is then used to focus attention, with subsequently more focused
and quantitative analysis (absolute measurement) following. This process was
dubbed the Visual Information Seeking Mantra by Shneiderman (1996) and is
conducive to pattern discovery as it allows the user to analyse a picture at dif-
ferent levels.

Although more powerful and flexible than textual presentations, graphical
presentations are more difficult to create and are open to subjective interpre-
tation, whereas textual primitives have in general a more stable interpretation.
Subjective interpretation is due to the abstraction of the underlying results into
graphical primitives through defined mappings. This allows the results to be
presented in ways that facilitate perception of patterns and structure within the
result set, but if non-intuitive mappings are used then the perception of patterns
will be less predictable.

4 Presentation of Mining Results

The variance in subjective interpretations of a presentation can be reduced
through good design. This includes ensuring that presentation styles reflect the
data-mining task, and that the mapping between mining and graphical prim-
itives is intuitive, takes into consideration the user’s objectives and facilitates
interaction techniques. Clearly there is no single best presentation technique for
a data-mining task as there are too many factors that depend upon both the
user and the problem domain. The solution is therefore to create a flexible set
of presentation formats for each mining task that can satisfactorily be applied
to a wide range of problems.

4.1 Clustering

Clustering refers to a group of automated techniques that objectively group
items into classes based upon selected item attributes, maximising intra-class
similarity and inter-class dissimilarity. These techniques are used to discover at-
tribute correlations and overall distribution patterns within sets of data, helping
the user understand the natural grouping structure of the data (see (Fasulo 1999,
Hartigan 1975, Jain & Dubes 1988, Rasmussen 1992) for detailed discussions on
clustering algorithms).
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Clustering algorithms are based upon calculating the similarity measure of
selected attributes between items. This requires the participating attributes to
be in numeric form. Hence clustering visualisations are usually presented in
coordinate space within which the items coordinates are directly mapped to the
environment’s coordinates. The base criterion for a clustering visualisation is an
understandable representation of both the participating items and the clusters
to which they belong. However the visualisation of these criteria are subjective.
The choice of mapping depends upon the type of clustering algorithm used, the
objectives of the clustering task and the users perception of how this information
is best represented.

We present here an overview of clustering visualisations that facilitate per-
ception. The visualisations are divided into partition-based and density-based
presentations. Grid-based techniques are incorporated within the density-based
section due to their common grounding. This is followed by discussions on vol-
ume rendering and projection, which deals with clustering visualisation issues.
The section concludes with discussions on the inclusion of hierarchical, spatial
and temporal semantics into clustering presentations.

Partition-based Presentations Partition-based methods analytically subdi-
vide items into a number of clusters such that items in a cluster are more similar
to each other than they are to items in other clusters.

(a) H-Blob: 3D clustering presenta-
tion

(b) 3D centroid clustering with
membership mapping

Fig. 2: Centroid based 3D clustering presentations

Figure 2 presents two types of 3D partitioning visualisation. Figure 2a is a
snapshot of the tool H-Blob created by Sprenger, Brunella and Gross (2000).
The figure indicates the item-points and represents their cluster membership
as a translucent encasing. Figure 2b presents the same elements and although
less informative than H-Blob with respect to item membership, provides more

simeon
Australiasian  Data Mining Workshop  ADM03

simeon
65



information regarding cluster membership by correlating centroid size with mem-
bership.

A general problem with partition-based clustering methods is that the shape
of all discovered clusters are convex because a partition is equivalent to a Voronoi
Diagram and each cluster is contained within one of the Voronoi polygons
(Sander, Ester, Kriegel & Xu 1998). To overcome this limitation, density-based
algorithms were devised.

Density-based Presentations Density-based algorithms regard clusters as
dense regions of items which are separated by regions of low density. This group
of algorithms relies upon point-density functions and a density threshold pa-
rameter to discover clusters of arbitrary shape. The first presentations of these
algorithms were planar, as illustrated by Figure 3. The figure shows a DBSCAN
(Ester, Kriegel, Sander & Xu 1996) presentation that illustrates the discovery of
arbitrarily shaped clusters, each represented by a different colour.

Fig. 3: Density based clustering
presentation

Fig. 4: Partition based density presentation

Figure 4 represents a more informative visualisation from the University of
Halle’s DENCLUE system (Hinneburg & Keim 1999), which illustrates clustering
over two attributes. The left image extends into 3D space indicating item-point
density within the planar coordinate space. The selected density threshold is
represented as a slice parallel to the image base. The right image reflects the
identified clusters as though looking down upon the threshold slice as it cuts
through the 3D space.

Grid based clustering is a density-based method that optimises processing
through the summarisation of point data. This is accomplished by mapping the
data points to a grid of like dimensionality. Where the number of points within a
particular cell exceed a density threshold, the cell is classed as dense and included
as part of the cluster. This type of clustering differs from other density-based
presentations, as the visualisation is of the cells not the data-points. As indicated
in Figure 5 the clustering can be performed at different levels of resolution by
varying the grid cell size. This variance results in a tradeoff between clustering
accuracy and processing time (Hinneburg, Keim & Wawryniuk 1999).
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(a) (b) (c)

Fig. 5: Grid based clustering presentation with resolution variance

Projection techniques To this point we have assumed that clustering has
involved only two or three item attributes, the results of which can be mapped
directly onto coordinate-space presentations2. Presentation of clustering involv-
ing more than three item attributes is more difficult because projections of higher
dimensional space are unfamiliar. There are two solutions to this problem: the
reduction of attributes through non-linear dimension reduction techniques prior
to the clustering process, and the viewing of high dimensional results through
projecting the data onto lower dimension sub-spaces.

Central to non-linear dimension reduction techniques is the concept that,
regardless of the dimensionality, a relative distance can be calculated between
all item pairs (Li, Vel & Coomans 1995). Calculation of this distance provides
a basis for defining topology-preserving transformations that project each item
from n-dimensional space to two or three dimensional space whilst preserving
the relative distances between each item. Several different techniques exist for
performing these transformations including, multidimensional scaling (Young
1987) and spring-embedding systems (Bruss & Frick 1996, Gross, Sprenger &
Finger 1997). Once the transformation has occurred the clustering is performed
on two or three attributes which can then be directly mapped to viewing space.

Subspace projection techniques can be presented either statically or through
animation. Static presentations appear as scatterplot matrices (Carr, LittleField,
Nicholson & Littlefield 1987, Ward 1994), each of which contains a different
paired combination of the clustered attributes. Figure 6 illustrates this method
with colours used to differentiate clusters. Animated subspace presentation is
based upon the grand-tour concept devised by Asimov (1985). This concept is
an extension of data-rotation for multidimensional datasets, whereby a tour of
the high dimensional space is created by iterating through subspace projections
via interpolation along a geodesic path, creating the illusion of smooth motion.

Brushing techniques (Ward 1994) can be used within both the static and
animated techniques to track items in separate subspace visualisations. For ex-
ample, within scatterplot matrices the brushing of an item will result in it being
highlighted in each matrix. Within animated projections such as GrandTour,
brushing of an item will allow the user to track its movement from one subspace

2 Single attribute clustering is presented using common techniques like pie-charts and
histograms, which are not discussed within this paper.
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Fig. 6: Scatterplot matrix projection

presentation to another. The way in which the point moves may elicit further
information about the item and its relationships.

Tour paths can be selected in different ways including random, statistical and
cluster-separation techniques. Random tours arbitrarily iterate through every
set of different attributes. Statistical tours use explorative statistical techniques
such as principal component analysis (Faloutsos, & Lin 1995) and projection
pursuit indices (Asimov & Buja 1995) to examine the statistical significance of
variables and to decide which should be included in further analysis. Cluster-
separation techniques (Yang 2000) use cluster-centroid positions to facilitate
projection selection, each one based upon the mapping of the item to a three
dimensional subspace determined by the centroids of four clusters whereby the
distance between these centroids is maximised.

Volume rendering It is often the case in large datasets that multiple items map
to the same visualisation coordinate, which ultimately leads to misinterpretation
of the visualisation as many items appears as one. The presentation of large
numbers of items can result in a cluttered environment, making it difficult to
comprehend. To alleviate these issues the results can be presented as an item-
density map instead of a item-point map using volume rendering techniques. This
technique promotes the perception of density at each location in the respective
environment. Although not as accurate as item-point representations due to the
use of binning techniques to calculate the voxelised data to be rendered, it is a
useful overview technique that can be used as the starting point for exploration
of the results. A detail threshold can be defined within this type of presentation,
at which point the representation could change to a item-point map to give a
more accurate, detailed representation.
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Hierarchical clustering presentations Cluster algorithms that result in the
identification of hierarchical clusters or clusters of differing strengths are based
upon extensions to either partition or density-based algorithms. The associated
presentations reflect the underlying nature of the algorithm and incorporate
hierarchical semantics or structure as illustrated in Figure 7.

Fig. 7: Partition-based hierarchical clustering

Partition-hierarchy presentations are based upon the result of a sequence
of partitioning operations, whereby different levels of clusters are discovered by
splitting or merging currently discovered clusters. Figure 8 presents two different
representations of the same clustered dataset. Figure 8a presents a planar circle
bounded set of text item-points positioned in accordance with selected feature
values and represented as black points. The dissecting lines represent the hier-
archical clustering of the dataset. Each area (numerically labelled) relates to a
leaf-item in an associated dendogram shown in Figure 8b, which clearly indicates
the hierarchical nature of the clustering (Fox 2001).

(a) (b)

Fig. 8: Hierarchical clustering planar presentation, comprised of a hierarchically parti-
tioned space and associated dendogram (Fox,2001)
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Three dimensional presentations of partition-based hierarchical clustering are
typified in Figure 9, which shows a visualisation of the H-Blob system that
uses smooth translucent shapes (blobs) to indicate cluster boundaries (Sprenger,
Brunella & Gross 2000). In sequence, these separate visualisations represent
instances of an agglomerative H-blob session where the clusters are built up
from individual data points. The different levels of clustering are represented
separately to help perception, as the superimposition of all blobs upon a single
image would result in a cluttered and occluded environment.

(a) (b) (c)

Fig. 9: H-BLOB: Hierarchical clustering presentation

Density-hierarchy clustering methods are based upon the selection of a se-
quence of density threshold levels as illustrated in Figure 10, Figure 10a is the
same as that presented in Figure 4. By varying the density-threshold level, differ-
ent clusters are apparent. In this instance the thresholds have been arbitrarily se-
lected. However more intelligent techniques such as OPTICS’s reachability-plots
have been developed (Ankherst, Breunig, Kriegel & Sander 1999). Figure 11
illustrates an OPTICS visualisation of both the reachability plot and the resul-
tant hierarchical clustering with arrows super imposed to illustrate the mapping
between the two images.

(a) (b) (c)

Fig. 10: DENCLUE - Density presentation of same dataset with different thresholds
indicating possible hierarchical extension
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Fig. 11: OPTICS - hierarchical clustering using reachability plot

Conglomerative hierarchical visualisations exist within planar space (Figures
10, 11, 13, and 14). 3D space presentations commonly avoid conglomerative visu-
alisations (Figure 9) and instead represent hierarchical clustering as a sequence
of separate visualisations. This techniques reduces occlusion, whereby the lower
level clusters will be difficult to see because the higher level clusters will in effect
hide them from view. For example, H-Blob (Figure 9) does not use conglomera-
tive presentation because although the membranes representing the clusters are
translucent, lower level cluster membranes would remain unclear, especially in
scenario’s involving many levels.

Spatial clustering presentations In general the same techniques can be used
to present spatial and non-spatial clustering results because of the common
grounding of all clustering algorithms in distance metrics. The only difference is
whether the coordinate-space mapping is direct or abstract, where a direct map-
ping refers to spatial semantics. However there are two techniques related to
spatial clustering that are of interest from a presentation perspective: spatially
extended objects, and spatial obstacles.

Within many different application areas items occupy an area instead of a sin-
gle point. The clustering of these spatially extended objects or polygons requires
specialisation of the density-based method whereby each object is considered to
have a bounding area instead of occupying a particular point. The results are
then presented in a typical coordinate-space as illustrated by Figure 12.

The incorporation of real-world physical constraints such as the presence of
lakes and highways can effect clustering results. For example, Figure 13 shows
how COD (Tung, Hou & Han 2001) tackles this problem. The underlying algo-
rithm incorporates knowledge of the spatial location of obstacles that constrain
the clustering, such that a cluster cannot cross an obstacle.

Temporal clustering presentations Clustering can incorporate temporal se-
mantics through either incremental or instance-based techniques. Incremental
techniques involve the real-time incorporation of new or modified data into the
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Fig. 12: Clustering of spatially extended objects

(a) Preliminary presen-
tation of the data points
and obstacles

(b) Presentation of re-
sults using an obstacle
ignorant clustering algo-
rithm

(c) COD result

Fig. 13: COD - Clustering with obstructed distance

clustered result set. Instance-based techniques require the data set to be clus-
tered in its entirety at specific instances in time. The presentation of temporal
clustering may be either static as a sequence of static images, each of which
represents the clustering at a particular time, or the temporal semantics can
be incorporated through the use of animation. However, the actual presentation
forms do not differ from those already presented.

Presentation difficulties may arise when trying to incorporate both hierarchi-
cal and temporal semantics in a clustering presentation, especially in 3D space.
Hierarchical inclusion requires sequencing of images to avoid occlusion. If tem-
poral semantics were also to be included as a sequence of images, a matrix of
images would be required, each one representing a level of the hierarchy at a
particular point in time. The most efficient way of presenting these semantics
together would be in a single planar partition-based hierarchical presentation,
using interpolation along an intuitive path to incorporate time.
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4.2 Association Presentations

Association mining, or group affiliation, refers to a group of techniques that
discover relationships between items based on frequency metrics (see (Agrawal,
Imielinski & Swami 1993, Han, Kamber & Tung 2001, Srikant, Vu & Agrawal
1997) for further discussion). Associated presentations incorporate representa-
tions of the items and their relationships. These presentations fall into two
classes: matrix-based and graph-based methods.

Matrix-based Presentations Two types of matrix structure used in the pre-
sentation of association rules are 2D matrices and mosaic plots. 2D matrices
map the antecedent and consequent to separate axes with the third axis indi-
cating the relationship strength, as illustrated by Figure 14a. Figure 14b is a
visualisation from SGI’s MINESET tool, which follows the same matrix design.
Matrix-based visualisations are useful when small numbers of itemsets are to be
presented. However they degenerate as the underlying result set increases in size
and complexity as every new combination of valid antecedents or consequents
is appended to each axis in the presentation resulting in an order of n2 rate
of matrix growth. This may lead to large presentations that are cumbersome,
occluded and hence difficult to understand.

(a) 2D matrix illustrating the
rule A + B → C with support
indicated by the third dimen-
sion

(b) SGI Mineset Visualisation of Association
Rules

Fig. 14: Matrix based Association Presentations

Wong et al. (Wong, Whitney & Thomas 1999) have tried to minimise some
of these matrix problems through the implementation of a rule-to-item based
matrix shown in Figure 15, which is based upon the premise that an item can only
occur once in a rule. The technique improves upon previous matrix presentations
in that the matrix growth is linear when new rules are appended and the matrix
is less sparse. Occlusion is also improved by displaying the associated support
and confidence data as wall plates.
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Fig. 15: Rule vs item association matrix

Hofman et al. (2000) created an alternative form of matrix visualisation -
Interactive Mosaic Plots. This visualisation technique (shown in Figure 16) al-
lows the investigation of the associations between a set of antecedents (and all
permutations thereof) and a consequent. Within mosaic plots individual an-
tecedents are represented as horizontal bars along the x-axis and the strength
of an association is represented by the height of the vertical column above the
specified antecedent permutation (inclusion denoted by black bar). Figure 16
illustrates the associations between the antecedent set heineken&coke&chicken

and the consequent sardines, the vertical columns indicate both the strength of
the positive-association (dark grey) and its negation notsardines (light grey).

Consequent

Antecedents

Fig. 16: Interactive Mosaic Plot (Hofman, Siebes & Wilhelm 2000)
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Interactive mosaic plots allow the user to arbitrarily specify sets of an-
tecedents and consequents. However the technique is designed for focused dis-
covery where the set of attributes under consideration is small and becomes
increasingly difficult to interpret as the number of items increase.

Figure 16 indicates that a potential rule of interest may exist in the form of
heineken&coke&chicken⇒ sardines as there is a significant difference between
its confidence and that of all other permutations. The example highlights the
contribution of the mosaic plots technique visualisation technique as although it
is constrained in terms of volume of information presented, it allows a detailed
analysis of the participants.

Graph-based presentations Graph based techniques present items as nodes
and associations as the linking of nodes. Presentations vary in the placement of
the nodes and the representation of metadata, including direction, confidence
and support. This presentation type displays association rules in a more concise
manner than that of matrix-based techniques. However as the number of items
increase, graph based visualisations become cluttered and hence also hard to
interpret.

Fig. 17: Rule Graph

Rule Graph (Klemettinen, Mannila, Ronkainen & Verkano 1994) illustrated
in Figure 17, is a comprehensive directed graph presentation. In this presentation
instance items are represented by alpha-labelled nodes, with the arc thickness
and label representing the association’s confidence and support. Rule Graph uses
rule templates to reduce the complexity of the presentation by allowing users
to create display filters through template manipulation. This is indicated in the
figure by items E through J, which have been removed from the display and
appear to the right of the image. This allows the user to focus on rule subsets
aiding in presentation comprehension.

Rainsford and Roddick (2000) (Figure 18) developed a circular visualisation
in which the items are evenly spaced around the circumference and L2 associ-
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ations are represented as chords coloured with respect to association direction.
This type of visualisation is effective in relating holistic information regarding
the mining session, concisely representing results and indicating areas of interest.

Fig. 18: Circular association rule visualisation (Rainsford & Roddick 2000)

Directed Associated Visualisation (DAV) (Hao, Dayal, Hsu, Sprenger & Gross
2001), is a 3D visualisation technique that maps the items and relationships to
positions and vertices on a sphere, using weighted edges to indicate confidence
and arrows for direction. DAV distributes items equally on a spherical surface
(Figure 19(a)). Based on physics principles of masses and springs, a support
matrix is then created that relates the strength of the association between items
in terms of spring tension. The spherical structure is then relaxed and a state
of low local minimum energy is reached (Figure 19(b)), resulting in each item’s
relative position reflecting its associations. The direction and confidence of each
vertex is then calculated (Figure 19(c)), and finally presented to the user.

Hierarchical association presentations Association mining over different
levels of abstraction implies that items belong to a taxonomy and that interest-
ing rules may be discovered by mining associations at not only the item level
but also at higher levels in the taxonomy. Related presentations incorporate
this hierarchical structure with associations that may be discovered amongst
the differing levels of the taxonomy. Our research at Flinders University has
created a visualisation technique incorporating hierarchical semantics known as
CARV (Concentric Association Rule Visualisation) (Ceglar, Roddick, Calder &
Rainsford 2003). This technique is capable of displaying both single-level and
hierarchical association mining results as illustrated in Figure 20.
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(a) Initialisation (b) Relaxation (c) Direction

Fig. 19: DAV Process (Hao, Dayal, Hsu, Sprenger & Gross 2000)

(a) Initial presentation
of itemsets

(b) Intermediate pre-
sentation stage

(c) Final presentation

Fig. 20: Concentric Association Rule Visualisation

Spatial association presentation Spatial association mining is the discovery
of relationships among sets of spatially oriented items, possibly influenced by
nonspatial predicates. For example, the spatial association rule is(caravanpark)
and closeto(waterbody) → has(boathire) consists of spatial antecedents and a
non-spatial consequent. Spatial items use spatial predicates to represent topo-
logical relationships between spatial objects, as illustrated in the above example
with the predicates is and closeto, other predicates include intersects, contains,
adjacentto, leftof and covers (Koperski & Han 1995).

Koperski and Han have undertaken the extensive research into this field.
Although the algorithmic development is advanced, in general presentation is
in textual form. Visual representations need to incorporate spatial predicates as
well as regular association presentation elements. At present there is no intuitive
means of doing so. A current technique by Koperski and Han uses a regular
association graph annotated with textual spatial predicates (Figure 21).

Temporal association presentation The inclusion of temporal semantics
within association mining algorithms involves the discovery of discrete events
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Fig. 21: Geominer - Spatial association rule visualisation

that frequently occur in the same arrangement along a time line. Therefore
temporal mining is the study of the temporal element arrangement, whereas
association mining is the study of item relationships. Like spatial mining, tem-
poral mining requires the incorporation of a set of defined temporal predicates.

For example, tea
after
→ cinema consists of two events tea and cinema with the

predicate
after
→ indicating their temporal arrangement.

Fig. 22: Temporal Association Mining
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Figure 22 shows a temporal presentation designed by Rainsford and Roddick
(1999), that incorporates temporality, by representing the temporal predicates
(centre column) through which each rule (line) passes. In this way the temporal
relationships between the antecedent (left) and consequent (right) can be seen,
with colour representing each rule’s confidence. Although restricted to simple
rules (single antecedent and consequent), this visualisation technique efficiently
presents rules with diverse temporal predicates.

Fig. 23: Sequence Mining Presentation

Closely related to temporal mining is sequence mining, in which the patterns
being discovered are constrained to sequentially discrete events. This focus on a
particular temporal aspect facilitates visualisation design as only a single tem-
poral predicate is to be represented. Research by Wong et al. (Wong, Cowley,
Foote, Jurrus & Thomas 2000) focus on sequential mining and to this end they
have developed a visualisation for the presentation of temporal patterns discov-
ered from newspaper article topics over a period of time. This is illustrated in
Figure 23, where the topics are listed on the y-axis and the timeline along the
x-axis. The patterns found at various times are displayed in a colour representing
level of support. The four dashed circles highlight the presence of the same two
patterns within the time period.

The technique by Wong et al. provides a mixture of qualitative and quanti-
tative information, showing the patterns while providing information regarding
the times at which they occurred. A more qualitative and concise presentation
of the interesting information (the two re-occurring patterns) might have been
achieved through the use of Rainsford’s presentation method. However this would
be dependent upon the underlying algorithm.

Advances in sequence mining has resulted in a need to incorporate more
meaning within the generated rules, resulting in the inclusion of temporal logic
semantics (Allen 1983) within sequential mining algorithms (Höppner 2002, Pad-
manabhan & Tuzhilin 1996). This enables rules such as the following to be de-
tected and reported.
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Legend

Node Colour Description

Green Root Node for the interaction (E)

Blue Enclosing sub-episode (G, L, I, H)

Orange Enclosed sub-episode (C, A, T, O)

Purple Shared node of both enclosing and
enclosed sub-episodes (N, S)

Edge Colour

Red Relationship between two Nodes
and their supports

Gray The point(s) at which the enclosed
sub-episode begins/ends within the
enclosing sub-episode

Fig. 24: INTEM interaction of CANTONESE during ENGLISH

((Alarm A
before
−→ Alarm B)

during
←→ Alarm C)

starts
←→ Alarm D

These types of rules can become quite complex and to the authors’ knowl-
edge have to date only been presented textually. In an attempt to present the
rules in a more meaningful manner, we at Flinders have developed the INTEM
(INTeracting Episode Miner) visualization technique. The technique is simi-
lar to mosaic plots 16 in that it allows the detailed investigation of particular
sequence interactions that are of interest to the user, as illustrated in Figure 24.

5 Human Computer Interaction

Visualisation facilitates the perception of patterns and structure within data
mining results. However, a static presentation in itself is often inadequate and
interactive capabilities are required to allow effective exploration of the visuali-
sation. This relates to Shneiderman’s Visual Information Seeking Mantra, which
stated that the initial view is qualitative and of an overview nature and that
through interaction the user can proceed to focus upon interesting sub-areas for
more quantitative analysis.

Interaction occurs at many different levels, as illustrated by the Layered Inter-
action Model, shown in Figure 25. This model identifies a sequence of interaction
levels that build upon each other, illustrating that a interaction requirement can
be broken into different levels of abstraction, ranging from the subjective goals of
the interaction through to the physical I/O of the interaction. There is however a
definite shift between the concept-based upper levels and the activity-based lower
levels, indicating a transition between what is required and how it is done. The
mapping or transformation between the concept and activity levels of interaction
is known as direct manipulation and occurs at the junction of the syntactic and
semantic levels. This section discusses the exploration of presentations through
direct manipulation and the use of views to facilitate understanding in large
complex visualisations.
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Level Name Exchanged Information Example

7 Goal Real World Concepts Remove letter section

6 Task Computer oriented actions Delete 6 lines of edited text

5 Semantics Specific operations Delete selected lines

4 Syntax Sentences of tokens Click at left of first char.,
whilst holding down left
mouse button, click to the
right of the last character

3 Lexical Tokens (smallest info carrying units) Click at left of first char.

2 Alphabetic Lexemes (primitive symbols) Click at (200,150)

1 Physical Hard I/O (movement,click) Click

Fig. 25: Layered Interaction Model

5.1 Direct manipulation

Direct manipulation can be defined as the mapping between the semantic and
syntactic levels of the layered interaction model (refer to Figure 25). The ob-
jective in constructing this mapping is to create as close a match as possible
between the structure of how users think about a task and the activity used in
solving it, while attempting to maximise problem domain compatibility (John,
Rosenbloom & Newell 1985). Direct manipulation design effects the interactive
quality of the system, including error frequency, speed of task performance, and
user skill retention (Buxton 1986).

There is not always a single best set of interaction capabilities for a particular
visualisation. Not all users have the same mental model, and even for a single
user the mental model may differ depending upon the user’s current goals. There-
fore the optimal solution is an intuitive set of mappings that mimic real world
activities. For example, the task of moving a file in a paper-based office involves
going to the relevant filing cabinet, removing the required file and carrying it to
its new location. Intuitively the same task on a computer system should follow
the same steps. Graphical interfaces provide this capability by representing data
as graphical icons and encapsulating activities within interaction mappings. So
the movement of a piece of data within the computer system will generally in-
volve selecting the relevant icon and dragging it to its new location. Importantly,
the syntax of operations in an interaction command should closely correspond
to the data’s required semantic changes, and the screen representation should
reflect these changes.

Graphical level interaction is based upon selection and navigation activities
that are specified to the computer by the user through pointing devices. Selection
is the designation of a point of interest within the graphical interface, signified
through an action such as clicking a mouse button or pressing a key. Navigation
is the movement of the interest focus, which is generally accomplished through
a continuous activity such as moving the mouse or holding down specific keys.
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These primitives work together within different environments to provide the
means by which any presentation may be explored in a detailed manner.

As there are an arbitrary number of semantic tasks that can be undertaken
within a presentation, the overloading of an activity primitive such as selec-
tion is achieved by varying the graphical primitive specification. For example,
the functionality required within a presentation environment might include the
ability to delete items and to display item details in a pop-up dialog, both of
which involve item selection. Overloading of the selection primitive is achieved
by either varying the selection action for each semantic task or requiring a com-
bination action either in sequence or parallel. Another technique used to combat
overloading, (especially in navigation) is indirect manipulation, whereby the pre-
sentation is manipulated through interaction with associated graphic artefacts.
A common example is the use of scroll-bars within presentation environments
to provide navigation at both the screen and document levels. However, indirect
manipulation techniques require that the user’s focus be drawn away from the
actual presentation and lessen the interactive experience (Koedinger 1992). Mice
with scroll-wheels overcome this by providing an additional form of vertical nav-
igation, hence providing a means for direct navigation at both the screen and
document levels.

3D presentations commonly provide more freedom but increase input over-
loading and hence the variation of actions required to effectively explore the
environment. Alternatively the use of immersive presentation devices such as
headsets, and pointing devices that allow further degrees of freedom such as fly-
ing mice and gloves can increase the user’s experience of direct interaction and
reduce the mapping overload.

The provision of a succinct set of direct manipulation mappings is critical for
effective presentation exploration. The level of interactive functionality provided
is important as too little will constrain the exploration process and too much
will result in interactive quality degradation. This degradation reflects the provi-
sion of too many functional alternatives, resulting in non-intuitive mappings and
hence longer task times and less skill retention. Therefore good direct manip-
ulation design involves the specification of a succinct intuitive set of mappings
based upon selection and navigation primitives to facilitate the comprehensive
exploration of a presentation.

5.2 Interactive Views

Mining result sets are often large and complex, typically tens of thousands of
items. Their size makes them difficult to entirely represent in a form conducive
to understanding by the user. Large result sets produce cluttered presentations
because of the larger number of graphical objects required to represent the un-
derlying data and their discovered relationships. Additional problems occur in
the presentation of hierarchical clustering semantics where separate presenta-
tions are required to display different hierarchical instances of the clustering.

Interactive views use direct and indirect manipulation methods to enhance
user perception of a result through user-specified filtering of the result set so
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that only a subset are presented (Klemettinen, Mannila & Toivonen 1997, Rib-
arsky, Katz, Jiang & Holland 1999, Wills 1998). Filter parameters are generally
specified through indirect manipulation via interface controls and can involve
threshold, parameter, and template specification and also control the partici-
pation of individual items and discovered relations. Threshold specification can
be used in association rules to constrain the confidence and support parameters
that provide heuristics as to the strength of the association and the importance
of the item within the data set. By raising the required confidence threshold,
the weaker rules will no longer be displayed. Templates can constrain the rule
form. For example, the presentation can be limited to those rules that have only
a single antecedent.

(a) 7 clusters (b) 12 clusters

(c) 24 clusters (d) 76 clusters

Fig. 26: Interactive Views of hierarchical clustering

Clustering based presentations are different in that the discovered relation-
ships are global in nature unlike association mining where each relationship
effects only a few items, therefore constraint of the presentation to a subset of
clustered items is generally unwarranted. However Figure 26 shows how inter-
active views can be useful in presenting hierarchical clustering results. The user
can change the number and hence levels of clustering viewed through the use of
an associated slide bar.

simeon
Australiasian  Data Mining Workshop  ADM03

simeon
83



6 Guided Knowledge Discovery and Interactive Data

Mining

Interactive data mining is a process whereby the user can guide the knowledge
discovery. It is achieved by dynamically presenting the results of the data mining
process and incorporating interactive capabilities within the presentation envi-
ronment. This allows the user to interact with the underlying mining process.
Through such interaction the user is able to guide the mining process and steer
the discovery process to areas of user interest.

Fig. 27: Knowledge Discovery Process

The iterative knowledge discovery process is illustrated in Figure 27. This
process is controlled by user specification of data sources, tools, and associated
parameters. The process includes data collection (possibly from multiple het-
erogenous sources), pre-processing (which massages the data into a form required
for analysis), analysis (mining), presentation, and finally interpretation by the
user. This widely accepted model of the knowledge discovery process shows each
stage as being independent, with the interaction between stages constrained to
the piping of the output of one stage to the input of the next stage. Depending
upon the extent to which the results satisfy the user’s goals, the user may refine
the specification of tools and parameters and re-cook the results. This re-cooking

or iteration of the knowledge discovery process or portions thereof can be a
time expensive exercise, with the stages of collection, preprocessing and analysis
requiring many hours of work for large or complex data sets.

simeon
Australiasian  Data Mining Workshop  ADM03

simeon
84



Some researchers report that the initial specification of the collection and
preprocessing stages can take up to 60% of the processing time. However because
the user has a high degree of control over these processes and can specify exactly
what is required, refinement is typically unnecessary. The analysis or mining
stage, however, is generally batch oriented, so the user has no control over the
process. User refinement and re-cooking generally occur at the analysis stage,
with the user tweaking the mining algorithm’s parameters in an attempt to
produce results of greater interest. It is this lack of user control within the
analysis process that is rectified by incorporating interactive capabilities within
the mining process.

Involving the user in the mining process requires an interface whereby the
user can see and guide the mining. In this way, the coupling between the analy-
sis and presentation stages is strengthened by providing real-time streaming of
analysis results to the presentation tool for user interpretation and by allowing
the subsequent guidance of the mining algorithm through user interaction with
the presentation.

Fig. 28: Guided Knowledge Discovery Process

Figure 28 shows the changes to the process. The change results in the merging
of the analysis and presentation stages, although current research is focused on
maintaining stage independence and increasing the coupling through the speci-
fication of a generic set of interface methods that capture the required interac-
tive functionality. This technology will provide flexibility by allowing the user
to select the presentation technique that best suits their current needs. Ex-
amples of this technology are the FIDO project currently being undertaken at
Flinders University (Roddick & Ceglar 2001) and the KESO project at the Uni-
versity of Helsinki (Wrobel, Wettschereck, Verkamo, Siebes, Mannila, Kwakkel
& Klosgen 1996).
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Increased coupling between the analysis and presentation stages is illustrated
in Figure 29 and Figure 30, which differentiate between a batch and interactive
mining run. The four images comprising these figures represent data mining runs
as a tree structure with each level implying a point in time. The time interval is
not constant but indicates a point at which the mining algorithm reaches a stage
where intermediate results may be produced. The production of intermediate
results is algorithm dependant, however most exploratory mining algorithms, for
example Apriori and k-means, involve multiple iterations over the dataset, which
provide natural processing stages. Where the algorithm requires only a single
pass, techniques such as sampling can be used to provide intermediate results.
Within Figures 32 and 33, the nodes within each tree level indicate the discovered
information at that point in time; the blue nodes represent intermediate results
and the red nodes represent terminal results.

Fig. 29: Batch Data Mining Run

Figure 29 presents a regular batch mining run where the terminal results are
presented only at completion. If refinement is required, the entire mining run
must be repeated. Figure 30 illustrates the guidance of the knowledge discovery
process through interactive mining. These three diagrams show the production
or update of the presentation at different stages during the analysis process, thus
providing the user with insight into the process.

The initial presentation (Figure 30a) is generated based upon the available
intermediate results. The user is then able to interact with this presentation to
guide further processing, represented in Figure 30b by the green coloured nodes
that indicate the users interest in these intermediate results. Further processing is
then constrained to the intermediate results indicated by these nodes. Figure 30c
illustrates the completed state of the exploration process, within which can be
seen the inclusion of further guidance.

Comparing Figure 29 and Figure 30c highlights the advantages of interactive
data mining. In particular the terminal result set is smaller, with less inter-
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(a) Initial presentation (b) Intermediate Presen-
tation

(c) Completed presenta-
tion

Fig. 30: Interactive data mining

mediate results being processed. This reduces mining time and produces less
cluttered presentations. In addition the incorporation of subjective as well as
objective measures of interest within guided knowledge discovery ensures that
this smaller, more quickly produced result set will be of greater interest to the
user. It is therefore also likely that less refinement and reprocessing will be re-
quired, further reducing mining time.

Other techniques used to reduce mining time, particularly in the case of
association mining, are cache-based and constraint-based mining. Cache-based
mining or dynamic mining involves the storage of the results of frequently re-
quested queries for fast retrieval of mining over common sets (Nag, Deshpande &
DeWitt 1999, Raghavan & Hafez 2000). Constraint-based mining includes tech-
niques such as subset mining and the prior specification of constraints. Subset
mining involves the mining of a subset of the data, the rules of which are then
verified against the whole set (Toivonen 1996). However, this method is proba-
bilistic and may not discover some rules of interest. Prior constraint techniques
involve the specification of boolean expressions to constrain the mining process
(Srikant et al. 1997). However it is often the case in explorative tasks the user
does not know beforehand what is of interest; only through the presentation of
options can the user focus on what is of greater interest. Although these meth-
ods may reduce mining time, they do not pre-empt guided discovery through
interaction, and are not associated with the benefits it offers.

The granularity and types of interaction possible are dependent upon both
the presentation type and mining task. The user may manipulate the mining
process either in terms of its focus, its parameters or its constituent dataset by
interacting with the associated real-time presentation. Figure 30 is indicative of
an exclusion form of interaction whereby the user eliminates a node from further
processing. A more advanced technique is that of priority interaction whereby the
user selects the nodes of interest, which are processed first and hence presented
first. This doesn’t exclude the further processing of the other nodes; it simply
puts off this processing until the prioritised work has been completed. This
ensures that eventually all elements will be processed, so all possibly interesting
results are discovered, while arranging for those of most interest (as specified by
the user) to be processed first (Wrobel et al. 1996).
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Although some researchers have investigated interaction in the context of
data mining, most such systems actually incorporate forms of interactive views
(Chu & Wong 1998, Klemettinen et al. 1997, Ribarsky et al. 1999, Wills 1998,
Xiao & Dunham 2001) or are iterative but allow refinement through graphical
interaction (Kim, Kwon & Cook 2000). The following subsections discuss those
published works providing interactive capabilities in the fields of clustering and
association mining.

6.1 Interactive Clustering

The Mitsubishi Electronic Research Laboratory (MERL) at Cambridge Uni-
versity have investigated the use of interaction in explorative analysis to solve
optimisation problems in the fields of vehicle routing (Anderson, Anderson, Lesh,
Marks, Perlin, Ratajczak & Ryall 2000) and network partitioning (Lesh, Marks
& Patrignani 2000). This study centres on the Human Guided Simple Search
(HuGSS) paradigm, which improves the effectiveness of a relatively simple search
algorithm by allowing users to steer the search process interactively. The inter-
active capabilities provided by this system include the ability to escape local
minima via manual editing and to focus searches into areas of promise.

An application to which the HuGSS paradigm has been applied is that of
vehicle routing with time windows. This study involves the optimisation of goods
delivery to a group of customers with the fewest trucks, while minimising the
distance travelled by each truck. The system uses either a greedy or steep-descent
clustering algorithm to determine the number of trucks and the routes they
should take. The user specifies the number of steps in a search invocation. This
effectively controls the number of automated allocation moves the computer can
make before presenting a set of intermediate results to the user. Users have the
opportunity to insert guidance primitives for the next invocation of automated
allocation.

(a) Initial Solu-
tion

(b) User move-
ment of customer
from route A to B

(c) Moving that
customer result in
sub optimal solu-
tion

(d) Algorithm
re-optimises
based upon new
constraints

Fig. 31: Repercussions of user movement of customer from route A to B

In this example, the user guides the route allocation process and escapes local
minima by manually assigning customers to routes, in effect changing the cluster
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to which the item belongs. This automatically invokes a route optimisation algo-
rithm on the effected routes only, ensuring that under these new constraints the
system still provides the best possible solution, as illustrated in Figure 31. The
user can additionally change a customer’s priority, which effects when the cus-
tomer is considered for movement by the algorithm, and changes the algorithm’s
associated objective measures and mode before invocating another sequence of
automated route allocations.

The MERL group has also applied the HuGSS paradigm to the area of k-
way network partitioning, a NP-hard problem arising from VLSI design and
elsewhere. This application has required the development of a different set of
presentation techniques that visualise the required relevant aspects. The work
consequently led to the development of a new set of interaction mappings that
effectively provide the same types of interactive guidance as the route discovery
application (Lesh et al. 2000). Other work (Nascimento & Eades 2001) allow
the user to interactively change clusters number and size however the crucial
element in MERL’s research is the ability to guide the cluster membership of
particular items. This research by MERL is the most significant published work
in the field to date.

6.2 Interactive Association Mining

Research undertaken by Brin and Page at the Stanford University (Brin &
Page 1998) appears to be the only piece of research that satisfies our crite-
ria for guided association mining. Known as Dynamic Data Mining (DDM),
their work attempts to produce more interesting rules by foregoing traditional
support-based algorithms (that use a single deterministic run) and instead use
a method that continuously explores more of the search space. This is accom-
plished through the incorporation of a user-defined measure of interest, Weight,
which can be redefined dynamically and a heuristic, HeavyEdgeProperty, which
guides the exploration process.

Rather than the mining process being a single deterministic run (producing
a well-defined set of itemsets and rules), DDM invokes a process that continu-
ally generates improving itemsets, based upon the Dynamic Itemset Counting
algorithm (DIC) (Brin, Motwani, Ullman & Tsur 1997). This allows the DDM
to take advantage of intermediate counts to form an estimate of an itemset’s
occurrence or weight, which results in the presentation of intermediate results to
the user. The user is then able to dynamically adjust individual item weights, in
effect prioritising them. User interaction is indirect and textual, with refinement
occurring through an associated text box within which the user can adjust global
mining parameters and individual item weights via a simple language.

This research provides a means of prioritising the mining of particular items
and in effect allows the user to insert a subjective measure of interestingness into
the algorithm. The technique will produce a more interesting and smaller set of
results than traditional batch processing methods.
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7 Conclusion

Guided knowledge discovery through interactive data mining as a discrete field
of research is still in its infancy and as such there are few published works of
relevance. This leaves open broad and diverse areas of further research in the ar-
eas of algorithmic development, interaction, and presentations and in associated
areas such as collaborative guidance.

Future algorithmic research in the field will focus upon methods by which
guidance can be incorporated into new or existing explorative algorithms at dif-
ferent levels of granularity. Preliminary areas that show promise include priority
based algorithms (Brin & Page 1998), incremental computation (Sundaresh &
Hudak 1991) and state based processing, which uses the concept of rollback to
return to a previous intermediate state instead of re-instigating a new analysis.
An associated area is the investigation of supporting frameworks that provide
flexible interactive knowledge discovery environments.

It seems likely that the majority of these techniques will remain domain-
specific (if not task- specific), because of associated subjective interpretation.
The challenge lies in the creation of generic sets of interaction mappings between
the graphical interface and the underlying mining process. The development of
such mappings was indicated by the research of the MERL team (Anderson
et al. 2000, Lesh et al. 2000) where a single set of interaction functions were
effectively incorporated within two different problems domains, using different
domain specific presentations.

Existing knowledge discovery tools do not adequately provide the capabilities
to incorporate subjective measures of interestingness into the analysis process.
Current analysis results in ineffective discovery processes, as heuristic measures
cannot accurately portray what is potentially of interest to the user. As shown
by the MERL team (Anderson et al. 2000, Lesh et al. 2000), and Brin and
Page (1998), subjective judgement can be incorporated by actively engaging the
user in the mining process. Benefits include an accelerated knowledge discovery
process and improved results. User participation in the mining process results in
greater confidence in the correctness of the discovered patterns, due to the sense
of control that guidance capabilities provide.
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Abstract. This paper deals with an idea of the use of data mining approach in 
texture analysis. A new method based on association rules is proposed. This 
approach extracts texture primitives from an image texture and describes 
mutual relationships between these primitives. Within this method, a technique 
for feature vector construction without a priori knowledge of textures different 
from the analyzed one is presented. The Fisher criterion was used to measure 
an ability of the proposed method for successful discrimination of pairs of 
textures. This work provides also comparison of the proposed technique with a 
wide-used wavelet texture features.  

1   Introduction 

Texture is one of the most important property of image data used in many application 
domains, for instance medical image processing, industrial inspection, remote 
sensing, document processing etc. Texture description usually as a part of feature 
vector has also appeared in the area of content based image retrieval for image 
browsing, searching and retrieval [1], [2], [3]. 

In the last thirty years, many texture analysis techniques have been developed. 
They can be divided into four main classes [4]: statistical methods, signal processing 
methods, model based approaches and geometrical approaches. Currently, signal 
processing methods, mainly wavelet decomposition (e.g. [5], [3]) and Gabor filters 
(e.g. [1], [2]) belong to the most popular techniques.  

This work focuses on the other class, on geometrical properties of image texture. 
Herein, a texture is considered as being composed of texture primitives and an 
arrangement of these primitives is described by certain rules. 

We attempt to capture texture arrangement properties by data mining approach, 
particularly by association rules. The best-known application domain, where 
association rules have been successfully used, is market basket analysis. Here, the 
goal is to identify items frequently purchased together. We utilize association rules to 
determine texture primitives occurring together in a texture.  

The idea of using association rules during texture analysis was published by J. A. 
Rushing et al. in [6]. We extended this idea by the processing of image texture at the 
primitive level. We also developed a technique of the feature vector construction 
without a priori knowledge of textures different from the analyzed one. 
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The paper is organized as follows. The next section describes a proposed texture 
analysis method. Section 3 deals with separability measurements on pairs formed 
from some Brodatz textures [7]. Section 4 summarizes the results of the proposed 
approach. 

2   Texture Description Method 

We developed a new method of texture image description based on association rules 
for analyzing grey level texture images. This approach consists of three following 
steps:  
 

1. Extraction and description of texture primitives – The goal is to extract and 
describe texture primitives in an image texture (Section 2.1). 

2. Mining of association rules – In this step, the transaction databases are 
constructed and association rules are mined (Section 2.2). 

3. Feature vector construction – The goal is to compute a feature vector without 
a priori knowledge of a set of textures, different from the analyzed one 
(Section 2.3). 

 
In this method, the image texture is not analyzed at the pixel level (as in [6]), but at 

higher one, at the image primitive level. Obtained association rules describe texture 
primitive arrangement in a non-deterministic way. This data mining approach finds 
frequently occurring local structures at the primitive level in an analyzed image. 

2.1   Extraction and Description of Texture Primitives 

In this stage, we extract texture primitives from the analyzed image texture. As a 
texture primitive, we understand a connected region composed of pixels at the same 
grey level. Thus, the number and the size of extracted primitives depend on a texture 
type. For instance, we obtain a big number of small primitives in case of a 
microtexture.  

Once the primitives are identified, we describe them by their own grey levels and 
the geometrical properties. Then, the set of primitive descriptions is the output of this 
stage. 

In order to extract texture primitives, it is necessary to quantize every image to a 
certain number of grey levels. We chose the well-known statistical clustering 
algorithm k-means [8] to perform an adaptive quantization to a certain small number 
of levels. 

It remains texture primitive identification. For this task, we use connected 
component analysis. The connected component is a set of image pixels, which share a 
certain property. In this component, there exists a path between every pair of pixels. 
Every connected component represents one texture primitive, whereby a grey level of 
pixels is used as a shared property. We use a row-by-row labeling algorithm proposed 
by A. Rosenfeld and J. L. Phaltz [9].  
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Every identified primitive is described by its properties: 
 
1. The grey level. 
2. The area of primitive (number of pixels) 
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where  denotes the analyzed image texture. This function returns 1, if a 
pixel ) belongs to the primitive, otherwise 0. 
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2.2   Mining of Association Rule 

This part of a proposed method focuses on the mining of association rules, which 
characterize mutual relationships between texture primitives. The set of primitive 
descriptions together with the primitive adjacency information are the input of this 
stage. For the set of primitive descriptions, a transaction database is constructed based 
on primitive adjacency (Subsection Transaction Database Construction). In order to 
mine the association rules from a transaction database, we used the well-known 
Apriori algorithm (SubSection Association Rule Discovery). Thus, the set of 
association rules form the output of this stage. SubSection Association Rules provides 
brief introduction to association rules. 

Association Rules. Association Rules was introduced by R. Agrawal et al. [10] as 
one knowledge type, which can be discovered in databases. Association rules are 
non-deterministic rules, which capture mutual relationship between data stored in a 
database. Initially, these rules are designed for transaction databases. Such a database 
consists of transactions, where a transaction is a set of items related together. 

An association rule is an implication of the form A ⇒ B, where A, B are disjoint 
sets of items. This rule has two probability values: support s and confidence c.  

Support s of the rule expresses the percentage of transactions in the whole 
database, which contain both the sets A and B. Confidence c means the percentage of 
transactions containing both A and B from all transaction containing A. This can be 
written as follows: 

,)()( BAPBAs ∪=⇒  (4) 

simeon
Australiasian  Data Mining Workshop  ADM03

simeon
97



.  
)(

)()()(
AP

BAPABPBAc ∪
==⇒ (5) 

A typical example of the use of association rules is market basket analysis, where a 
transaction database contains information about costumer purchases. Each transaction 
consists of items within one purchase. Then, the interpretation of association rule 
A ⇒ B can be: “If a costumer buys items A (for instance bread and butter), then he 
also buys items B (for example milk).” 

Transaction Database Construction. A transaction database is constructed based on 
a primitive adjacency. In this process, the central primitives play an important role. 
The central primitive is each non-border texture primitive completely surrounded by 
its immediate neighbours.  

For every central primitive, a transaction is created, which contains this primitive 
with all immediately neighbouring ones. Thus, the cardinality of database is the 
number of central primitives. Fig. 2 depicts one example of such a transaction. 

 
 

 
Fig. 2. The example of a transaction – the central primitive is dark grey and its immediate 
neighbouring primitives are grey  

Each primitive in a transaction is represented by one vector containing its grey 
level, its area and the following two values describing relationship with its central 
primitive: 

 
1. The centroid distance, 
2. The angle between the line traversing the both centroids and the axis of the 

coordinate system. 
 

In Fig. 3, a draft of the both values representing inter-primitive relationship can be 
seen. The centroid distance and the angle serve to describe local image structures at 
the primitive level. 
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Because of the numeral nature of information stored in the transaction, it is 
necessary to quantize these values in the whole transaction database. For instance, the 
angle can be quantized to 4, 8 or 16 levels etc. 

 
Fig. 3. A relationship between central (dark grey) and neighbouring primitive (grey)  

Association Rule Discovery. We selected the well-known Apriori algorithm [10] to 
process a transaction database (for further details of this algorithm see e.g. [11]). The 
output of this algorithm is the set of frequent itemsets, which are sets of items 
satisfying the condition of minimum support value. 

From this set of frequent itemsets, association rules, which fulfill the minimum 
confidence condition, are generated according to the following widely used 
algorithm: 

 
1. For each frequent itemset l, all its non-empty subsets are generated. 

2. For every generated subset A, create a rule A ⇒ (l - A), if its confidence 
)(
)(

As
ls  

is equal or greater than the minimum confidence value. 
 
Note, that the itemset l of cardinality k generates 2k candidate association rules. Based 
on the number of generated rules for tested texture images, we limited the right and 
the left side cardinalities of rules to the following rule cardinality types: 
 

1. ( ) ⇒ ( ), 
2. ( )( ) ⇒ ( ), 
3. ( )( ) ⇒ ( )( ), 
4. ( )( )( ) ⇒ ( ), 

 
where the symbol ( ) denotes one item. 
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2.3   Feature Vector Construction 

In this stage, a feature vector representing an analyzed image texture is computed. 
The set of association rules is the input and one feature vector is the output. The 
feature vector is constructed in the following steps: 

 
1. Input set of association rules is divided into four groups of the same 

cardinality type (see Section 2.2). 
2. The rules in every group are sorted by the support and by the confidence. 
3. In every sorted group, only a certain number of first rules is kept. We used 

only the first two rules from every group. 
4. The length of the feature vector is divided into four partitions for every 

association rule groups. 
5. Each association rule is stored to the feature vector in this way: First, the 

values of the items on the right side and second, the values of the items of the 
left side (items of both sides of the rule are presorted in lexicographic order). 

6. If some rule group has less than two rules, the space for this rule in the feature 
vector is completed by zeros. 

 
Using this algorithm, a 104-dimensional feature vector is composed (4 values per one 
item). The feature vector is constructed without a priori knowledge of textures 
different from analyzed one (in contrast with [6]) and it has a fixed size and form. 
Such a form of the feature vector is suitable e.g. for content based image retrieval or 
for the data mining tasks performed over the entire image database. 

3   Discriminatory Ability of the Method 

In order to analyze properties of the proposed method, the Fisher criterion (Section 
3.1) which determine a discriminatory ability for a pair of textures is used. We 
performed a number of experiments over textures from the Brodatz album [7] and 
provide a comparison with wide-used wavelet texture features (Section 3.2). 

3.1   Fisher criterion 

In this work, the Fisher criterion is utilized to measure of proposed method ability 
to discriminate one texture from the other. The Fisher criterion expresses a 
separability of two clusters containing feature vectors, which characterize an analyzed 
pair of textures. In the area of texture analysis, this method was first proposed by P. 
Kruizinga and N. Petkov [12]. More details of the Fisher criterion can be found e.g. 
in [15], [16]. 

The Fisher linear discriminant function can be written in the following form: 

,)( 1
21 xSy T rrr −−= µµ  (6) 
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where xr  is feature vector obtained from an analyzed texture, y is its projection, 
21 , µµ rr  are the means of the two clusters and S is a pooled covariance matrix 
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N1 is the number of selected (e.g. randomly) feature vectors jx ;1
r  from the first cluster 

and N2 is the number of selected vectors jx ;2
r  from the second one.  

The Fisher linear discriminant function (6) realizes the projection of the n-
dimensional feature space on one-dimensional space (on a line). The dimensionality 
of a feature space is given by the number of features, contained in feature vectors. 
This projection maximizes the Fisher criterion 
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where η1, η2 and ,  are the means and the variances characterizing the 
distribution of the projected feature vectors of the two clusters. The means η1, η2 are 
yielded by the projections: 
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The Fisher criterion measures the distance between the means of the both clusters 
relative to the sum of their variances, thus to their compactness. That is why, it is 
suitable to measure separability of two clusters and also to express the capability of 
texture description methods for successful discrimination of pairs of different 
textures. 

3.2   Experimental schema and results 

We performed a number of experiments with the proposed method over textures 
from the Brodatz album [7] under following conditions: 

Six textures D34, D49, D75, D84, D95, D104 that were used are shown in Fig. 4. 
From every texture, one thousand of feature vectors were extracted by analysing 
texture in a 128 × 128 pixel window moving through the analysed image texture. All 
positions of this moving window cover the whole analysed texture uniformly. Thus, 
these thousand vectors for every given texture form a respective cluster. 

The texture analysis method was configured as follows: An input image (128 × 
128) – content of the moving window is quantized into 4 levels. Transaction database 
is quantized: 1. the grey level into 16 levels, 2. the area into 5 levels, 3. the distance 
into 5 levels and 4. the angle into 8 levels. For association rule mining, the support is 
set to 0.02 and the confidence to 0.2. 

We measured the Fisher criterion for every possible pair of the selected textures. 
The obtained results can be seen in Table 1. There are also the results of a wavelet 
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features there to provide a comparison between this new approach and one of the 
wide-used texture features. 
 

           
 

           
Fig. 4. Textures from the Brodatz album [7] used in experiments: D34, D49, D75, D84, D95, 
D104 (left to right, top to bottom)  

For this task, wavelet features similar to one mentioned in [5] were utilized. The 
manner of obtaining the cluster of feature vectors stays the same as for the association 
rule features, only the moving window size is changed to 32 × 32 pixel. Over input 
image (content of the moving window), three-level tree-structured wavelet 
decomposition using Haar filters is constructed (for further details see e.g. [13], [14]). 
From every of the ten obtained subbands, mean and standard deviation is computed. 
These values form a 20-dimensional feature vector. 

Table 1. The Fisher criterion values computed from wavelet features (WT) and association rule 
features (AR) 

Texture D34 D49 D75 D84 D95 D104 
- AR:  17.53 AR:    7.25 AR: 115.09 AR:  27.08 AR:    4.20 D34 - WT:  27.16 WT:  12.30 WT:    9.08 WT:  11.10 WT:  26.45 

 - AR:    3.38  AR:  45.78 AR:  15.07 AR:  50.01 
D49  - WT:  13.17 WT:  18.19 WT:  10.51 WT:  16.85 

  - AR:    1.26 AR:    2.09 AR:    2.31 
D75   - WT:    8.29 WT:    4.55 WT:    8.71 

   - AR:    1.37 AR:    2.16 
D84    - WT:    5.69 WT:  10.51   

    - AR:    2.08 
D95     - WT:  10.81 

     - 
D104      - 
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Many results of the proposed method are a little worse than wavelet feature, but 
some results overcome them significantly. It is important to notice that this new 
method is still at the beginning of its development and after some modification (e.g. 
better extraction of primitives) it could yield much better results. 

4   Conclusion 

In this paper, a new method of a texture analysis based on the association rules has 
been proposed. This approach processes an image texture at primitive level. Within 
this new method, a technique for the feature vector construction without a priori 
knowledge of textures different from analyzed one (in contrast with [6]) was pre-
sented. Such a feature vector is suitable e.g. for content based image retrieval or for 
the data mining tasks performed over the entire image database. The discriminatory 
capability of the method was tested on some textures selected from the Brodatz album 
[7].  

Currently, we try to extend this approach by the multiresolution analysis, thus an 
image texture processing in several resolution levels. Our future work will focus on 
the research on the influence of an adjacency level extension upon the rule discovery 
process. The adjacency level extension means that a transaction will not only contain 
immediate neighbours of a central primitive, but even neighbours of these neighbours 
etc. We would also like to define the texture primitive description with more 
precision by using its shape properties. 
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Abstract. Clustering time series is an active research area with appli-
cations in many fields. One common feature of time series is the likely
presence of outliers. These uncharacteristic data can significantly effect
the quality of clusters formed. This paper evaluates a method of over-
coming the detrimental effects of outliers. We describe some of the al-
ternative approaches to clustering time series, then specify a particular
class of model for experimentation with k-means clustering and a corre-
lation based distance metric. For data derived from this class of model we
demonstrate that discretising the data into a binary series of above and
below the median improves the clustering when the data has outliers.
More specifically, we show that firstly, discretisation does not signifi-
cantly effect the accuracy of the clusters when there are no outliers and
secondly it significantly increases the accuracy in the presence of outliers,
even when the probability of outliers is very low.

1 Introduction

The clustering of time series has attracted the interest of researchers from a wide
range of fields, particularly from statistics [37], signal processing [17] and data
mining [12]. This has resulted in the development of a wide variety of techniques
designed to detect common underlying structural similarities in time dependent
data. A review of some of the work in the field is given in Section 2. These
techniques have been applied to data arising from many areas, for example:
web mining [13, 5]; finance and economics [43, 20]; medicine [23]; meterology [8];
speech recognition [17, 28]; gene expression analysis [18, 6] and robotics [45].
Our interest is primarily motivated by the desire to be able to detect common
patterns of behaviour in bidding strategies of agents competing in markets in
order to quantify adaptive agent performance [4].

Clustering is an unsupervised learning task, in that the learning algorithm
is not informed whether the assignment of a data to a cluster is correct or not.
For background into clustering see [25]. There are two main ways clustering has
been used with time series. Firstly, clustering can be applied to a single time
series, frequently using a windowing system, to form different generating models
of the single series [15]. Note that there is some controversy over the usefulness
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of this approach (see [27]). The second problem involves forming k clusters for
m time series rather than from a single series. We are interested in the latter
problem, which can be described as follows:

Given m time series, S = {s1, . . . , sm} of length n1, . . . nm, the problem
is to form k clusters or sets of time series, C = {C1, . . . , Ck}, so that the most
“similar” time series are in the same cluster. k may or may not be known a priori.
Also, cluster membership may be deterministic or probabilistic. To encompass
both we can generalise the clustering task to assigning a probability distribution
ps(j), to each time series which defines the probability that series s is in cluster
Cj .

The obvious crucial question is what is meant by most “similar” time series.
This is usually model and problem dependent, but can be generalised as follows.
Suppose a distance function d(a, b) is defined on the space of all possible series,
D. A distance function d(si, sj) : D × D → ℜ is a metric if it satisfies the four
conditions

d(a, b) > 0 if a 6= b

d(a, a) = 0
d(a, b) = d(b, a)

d(a, c) ≤ d(a, b) + d(b, c) ∀ a, b, c ∈ A.

The distance function may have a domain that is the space of all time series
or it may be embedded in a lower dimensional space formed through, for exam-
ple, fitting a parameterised model to each series. Given a distance metric, the
clustering task is to find the clusters that minimize the distance between the
elements within each cluster and maximize the distance between clusters. This
can be described by the introduction of a cost function. Suppose the cost for a
cluster Cj is defined as

cj =
∑

a,b∈S

pa(j) · pb(j) · d(a, b).

The clustering problem for a given k is to find the partition that minimizes the
total cost, c =

∑m

j=1
cj . If k is not given, then some weighting function has to

be included to encourage parsimonious clustering.
Clustering algorithms can be classified as two types, hierarchical methods

and partitioning methods. Hierarchical methods involve calculating all distances
then forming a dendrogram by using a linkage method such as nearest or fur-
thest neighbour. The second approach involves partitioning using an iterative
algorithm that attempts to optimize cluster assignation based on minimizing a
cost function.

The most commonly used partitioning method is the k-means algorithm [35].
This is an iterative local search method that attempts to minimize the distance
within the clusters. The EM (Expectation Maximizing) algorithm is a gener-
alisation of k-means [16]. Instead of assigning a data to a particular cluster, a
probability of membership of all clusters is maintained. In addition to a centroid
recording the means of the cluster, the EM algorithm also records a covariance

simeon
Australiasian  Data Mining Workshop  ADM03

simeon
106



matrix. Both k-means and EM have been used for clustering time series. A
comprehensive description of clustering algorithms can be found in [25].

The aim of this research is to demonstrate that discretizing the data can
make clustering time series more robust to the presence of outliers without sig-
nificantly decreasing accuracy when outliers are not present or highly unlikely.
Our initial approach to this is to define a simple class of underlying model sim-
ilar to that used by other researchers, then measure the effect on performance
of the introduction of outliers. Section 2 provides background into some of the
research into clustering time series. Section 3 describes experimentation on simu-
lated data with a standard clustering technique (k-means) and a simple distance
metric based on correlation and provides evidence of a scenario under which clip-
ping allows the optimal clusters to be found. Section 4 summarises the results
and describes the next stages of this research.

2 Related Research

Most research assumes some underlying form of the model and performs the clus-
tering based on this assumption. [12] makes the case for a model based, or gener-

ative approach, which can be classified into three broad categories, discussed in
Section 2.1: AutoRegressive Moving Average (ARIMA) models, Markov Chain
(MC) and Hidden Markov models (HMM) and polynomial mixture models. Ap-
proaches that do not assume a model form, often called similarity based ap-
proaches, are summarised in Section 2.2. Focardi [20] provides good background
material on clustering time series.

2.1 Model Based Approaches

ARIMA Models: The main approach of statistics researchers to the problem
of clustering time series is to assume the underlying models are generated by an
ARIMA process [10]. The clustering procedure usually involves:

1. fitting a model to each time series;
2. measuring distance between fitted models;
3. clustering based on these distances.

This approach is adopted by Piccolo [44], Maharaj [36, 37] and Baragona [7].
Tong and Dabas [48] cluster different ARIMA models that have been fitted to
the same data set, but the techniques used are also relevant to clustering models
from different data sets.

Fitting the model requires the estimation of the structure and parameters of
an ARIMA model. Structure is either assumed to be given or estimated using,
for example, Akaike’s Information Criterion or Schwartz’s Bayesian Imforma-
tion Criterion [10]. Parameters are commonly fitted using the generalised least
squares estimators. An order m ARIMA model can be fully specified by a set of
parameters

π = {π1, π2, . . . πm}.
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Some of the research based on assuming an ARIMA model derives the dis-
tance function from the differences between the estimates of these parameters.
Piccolo [44] uses the Euclidean distance between the parameters,

d(πa, πb) =

(

∞
∑

i=1

(πi,a − πi,b)
2

)
1

2

.

Maharaj [36, 37] adjusts her measure of distance between parameter sets by the
correlation matrix estimated by the least squares to allow for dependent time
series. She uses the resulting statistic as a test for
H0: πa = πb vs
H1: πa 6= πb

A function of the p-value of this test is used as a similarity mesasure (low p-
values making common cluster membership unlikely). An alternative approach
to forming a distance function, used in [48, 7], is to base distance on the residuals
of the model. Let ea be the residuals for model πa and ρa,b(i) be the correlation
between the residuals ea and eb. Tong [48] uses the sample correlation coefficient
with lag 0, denoted ρ(0),

d(a, b) = 1 − |ρ(a, b)(0)|

Baragona [7] uses a distance function that scales the zero lag correlation by
the sum of the lagged correlations,

d(a, b) =

√

(1 − ρ2

a,b(0))
∑m

i=1
(ρ2

a,b(i))

This function was proposed in [9], although in this case it was used on the time
series rather than the residuals of the models. A variety of clustering techniques
have been employed. For example, principle coordinates and multidimensional
scaling were used in [48, 44], hierarchical clustering with average linkage was used
in [36] and with single linkage, complete linkage and Ward’s method in [48] and
heuristic search techniques (genetic algorithms, simulated annealing and tabu
search) were employed in [7].

Hidden Markov Models (HMM): An alternative approach to the problem
has been adopted by researchers in speech recognition and machine learning.
Instead of an ARMA model, it is common to assume that the underlying gen-
erating models for each cluster can be accurately described as a markov chain
(MC) or hidden markov model (HMM). A HMM is a set of unobserved states,
each of which has an associated probability distribution for the random variable
being observed, and a transition matrix that specifies the probability of moving
from one state to another on any time step. A first-order HMM is an HMM
where T is dependent only on the previous state. A MC also involves a set of
states, except that the states correspond to the set of observable values of the
random variable (and hence are not hidden).
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For both approaches, the clustering algorithm generally involves the following
steps:

1. form an initial estimate of cluster membership;
2. form HMM models based on membership;
3. while there is some improvement in models

(a) adjust cluster membership;
(b) reform models;

The clustering may be hierarchical or partitional. One key difference in tech-
nique between the ARIMA and the MC/HMM methods is that the ARIMA
approach is to fit a model to each data before clustering, whereas most research
into HMMs involves forming the cluster models on each iteration of the clustering
algorithm.

MC models have been adopted by Ramoni et al [45] to model and cluster
discrete series. Each state is associated with each value a data can take, and
the problem becomes one of finding k transition matrices and identifying which
series originates from which matrix. Their algorithm, called Bayesian Clustering
by Dynamics (BCD), is a bottom up hierarchical agglomerative method, where
distance between models is measured using the Kullback-Leiber distance.

Cadez et al [12] also use a MC model in the context of a generalised proba-
bilistic EM-based framework for clustering. In [13] they apply the technique to
web mining. Ridgeway [46] compares using EM against Gibbs resampling when
clustering Markov processes.

Smyth [47] clusters using HMM by fitting a model to each series, then uses
the log-likelihood as a distance for a hierarchical furthest neighbour technique.
Parameters for a given model structure are estimated with the Baum-Welch
procedure.

Oates et al [40, 39, 42, 41] fit k HMMs using the Viterbi algorithm to train
HMM on greedily selected subsets of series. In [41] they set the initial clustering
using Dynamic Time Warping. HMM are fitted to each cluster, a Monte Carlo
simulation is conducted on each model and series that are empirically unlikely
to have been observed from a model are removed from the cluster. The model is
then retrained and the process repeated until no more series can be removed. It
is then tested whether unassigned series can be placed into other clusters. If not,
they form their own new clustering. They find that the hybridization of DTW
and HMM forms better clusters than either approach alone on simulated data
(which is also discretised) from models used in [47].

Zhong and Ghosh [53, 50–52, 49] use a model-based k-means clustering al-
gorithm and a version of the EM algorithm. The also use a hierarchical model
similar to that of [45], using HMM instead of MC models. Li and Biswas [32, 33,
30, 31, 34] propose a Bayesian HMM clustering methodology that includes deter-
mining the number of clusters and the structure of the HMM. Cadez, Gaffney
and Smyth [12, 13] use HMM within the context of a generalised probabilistic
framework. Alon et al [2] use the EM algorithm in HMM based clustering and
assess the performance of EM in relation to k-means.
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Polynomial Models Another approach is to assume the underlying model is
a mixture of Polynomial functions. Gaffney and Smyth [21, 22] assume a mix-
ture regression model. The EM algorithm with Maximum A Posteriori (MAP)
estimates is used to estimate the cluster membership probabilities and weighted
least squares used to fit the models. The technique is applied to simulated data,
environmental data and video streaming data.

Bar-Joseph et al [6] adopt a mixture spline model for gene expression data,
again using the EM algorithm in conjunction with least squares.

2.2 Model Free Approaches

Rather than assume a model form and base similarity on fitted parameter es-
timates, an alternative approach is to measure distance with the original or
transformed data.

The simplest approach is to treat the time series as an N -dimensional vector
and use the Lq Minkowsky distances, most commonly the Euclidean distance
metric, L2,

L2 = (

N
∑

i=1

|ai − bi|
2)

1

2 (1)

This measure is used by [1] in conjunction with fast fourier transforms. The
main problem with using an Lq measure for time series similarity is that they
are effected by the scale of the two time series, thus shape characteristics can
be lost, (a further problem is that it is required that data be available for the
same time steps, and this may not always be the case). [29] use a distance
metric based on the Euclidean distance but introduces an extra set of shape
parameters. An alternative is to use a metric that does capture the similarity
in shape, for example one based on the correlation between the series. If we
let C(a, b) be the correlation between the series a and b, then Equation 2 is a
metric, as demonstrated by Ormerod and Mounfield [43]. Similar metrics were
used in [9].

d(a, b) =
√

2(1 − C(a, b)) (2)

Other researchers look for commonality measures based on common subse-
quences. For example [14] and [19] define measures based on common subse-
quences.

An alternative approach is to transform the data then use an associated
metric. Approaches used include: time warping [41]; fast fourier transforms [1];
wavelet transforms [38] and piecewise constant approximation [26].

3 Experimentation

The results presented in this paper demonstrate that, for a certain class of un-
derlying clustering model (described in Section 3.1), and with a particular exper-
imental set up and clustering algorithm (outlined in Section 3.2), transforming
the continuous time series into a discrete binary series
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– does not significantly degrade clustering performance when there are no out-
liers; and

– significantly improves the quality of the final clusters found when there are
outliers, even when the probability of an outlier is very low.

3.1 Experimental Model

We generate time series data from polynomial models of the form

m(t) = p(t) + ǫ (3)

where ǫ is N(0, σ) and σ is constant. We assume the polynomial is order 1, i.e.

p(t) = a + b · t

The purpose of these experiments is to demonstrate the robustness in the pres-
ence of outliers of using a discretised time series rather than the the continuous
data for clustering. Hence, we add a further term to Equation 3 to model the
effect of outliers. A continuous time series is assumed to be generated by a se-
quence of observations from the model

m(t) = a + b · t + ǫ + r (4)

where
r = s · x · y.

s is a constant, x ∈ {0, 1} and y ∈ {−1, 1} are observations of independent
random variables, X and Y , where X has density

f(x) = px(1 − p)1−x

and Y has density

f(y) =
1

2
.

r is a random shock effect that can occur with probability p, and if it occurs
it has the effect of either adding or subtracting a constant s to the data (with
equal probability). A continuous time series is a sequence of observations from
a model, now defined as

y(t) = p(t) + ǫ + r t = 1 . . . n (5)

A binary data series is generated by transforming a continuous series into series
of above and below the median. If φy is the sample median of the data series
y(t), t = 1, . . . , n, then the associated discretised time series, z, is defined as

z(t) =

{

1 if y(t) > φy

0 otherwise
(6)

A data set is parameterised as follows: there are k models of the form given in
Equation 5, each of which generates l time series; each of the l ·k time series is of
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length n and is sampled at the same points t = 1, 2, . . . , n; σ defines the variabil-
ity of static noise, s the level of random shocks and p the probability of shocks.
From a data mining perspective, the clustering problem we are attempting to
solve has the following properties:

– learning is unsupervised since cluster membership is not known a priori;

– cluster sizes are equal (l is the same for all clusters k);

– there is no missing data (each series sampled at the same points);

– the number of clusters, k, is known a priori; and

– the distribution of ǫ is constant for all observations and all series.

3.2 Experimental Procedure

We use the k-means algorithm with the correlation based distance metric given
in Equation 2 for experimentation. We choose k-means as it is one of the most
popular and simple clustering algorithms. Further experimentation will involve
assessment of the clustering using alterative algorithms and distance metrics.

We initialise the centroids for k-means to a random data series. It is well
known that k-means is sensitive to initial conditions [11], hence we repeat the
classification algorithm with random initial conditions and then average over the
runs. For any data set D of l · k time series derived from a particular set of k

models, the clustering algorithm is run u times. For any particular parameter
values, v different sets of k models are generated.

Clustering performance is measured by the classification accuracy, i.e. the
ratio of the percentage of the data in the final clustering that is in the correct
cluster. Note we are measuring accuracy on the training data rather than ap-
plying the data to a separate testing data set. We do this because we wish to
measure the effects of outliers in the training data rather than assess the algo-
rithm’s ability to solve the clustering problem. We use this measure rather than
some of the alternatives (see [24]) since we know the correct clustering.

For a given clustering we measure the accuracy by forming a k×k contingency
matrix. Since the clustering label may not coincide with the actual labelling
(e.g. all those series in cluster 1 may be labelled cluster 2 by the clustering
algorithm) we evaluate the accuracy (number correctly classified divided by the
total number of series) for all possible k! permutations of the columns of the
contingency table. The achieved accuracy is the maximum accuracy over all
permutations.

We average the accuracy over the u repetitions to find the average accuracy
for a set of particular models, and average this data over the v different model
sets to find the average performance for a particular set of parameter values.
This average of averages we term the average correct classification.

All the parameters are given in Figure 1. Unless otherwise stated, the pa-
rameter values used in all experimentation is given in brackets.
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Parameters Meaning Default value
experiment parameters
k Number of clusters k = 2
n Time series length n = 100
l Series per cluster l = 10
u Clusterings per model u = 20
v Number of models v = 20
D Data set consisting of l · k series
mi A generating model
model parameters
ai, bi, i = 1 . . . k Linear parameters
σ Model noise σ = 10
p Outlier probability
s Random shock value s = 100

Fig. 1. List of experimental parameters

3.3 Experimental Sequence

We demonstrate that the discretised data results in significantly better clusters
when there are outliers in the data by conducting two experiments.

– Experiment 1 shows that discretising the data does not significantly reduce
the clustering accuracy when there are no outliers or outliers are very unlikely
(Section 3.4).

– Experiment 2 shows that discretising the data does significantly increase the
clustering accuracy when outliers are more likely (Section 3.5).

3.4 Experiment 1: Showing that using z does not significantly
decrease accuracy

The objective of this experiment is to determine whether discretising the data
significantly reduces the accuracy of the classification of the k-means algorithm
using a correlation based distance metric. We perform this experiment with
a sample from a wider class of models than used in Experiments 1 and 2. The
format of the models is as given in Equations 5 and 6 and the default parameters
are used (Figure 1). For each cluster, bi is selected randomly on the interval
[−0.5, 0.5] and a1 and a2 are uniformly sampled in the range [100, 200] for each
time series. The justification for these parameters is given in [3].

Let M be the set of all models considered in the experiment, with an instance
denoted mi. M contains all linear models with constants in the range [100, 200]
and gradient in the range [−0.5, 0.5]. Let C be the set M × M of generators of
the two cluster model. φy is the population median of the average classification
accuracy of the k-means algorithm (k known, random initial centroids) over the
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space of underlying models C and φz denotes the population median when using
the discretised data. µy and µz are the associated population means. Given a
random sample of size v from C we wish to test H0 : φz = φy against the
alternative H1 : φz < φy.

To test this hypothesis we conduct both paired and unpaired tests. With the
paired tests, the k-means algorithm is run (u = 20 times) on continuous series
and discrete series derived from the same continuous data. Table 1 shows that
there is little difference in the accuracy of the resulting clusterings.

Table 1. Clustering accuracy summary for paired samples. The difference series is the
continuous data minus the discrete data

Mean Median Min Max StDev
Continuous 80.13% 91.15% 56.60% 100% 17.80

Discrete 79.84% 86.30% 57.80% 100% 17.64
Difference 2.67% 0% -5% 8.7% 2.67

Of the 50 trials, there were 24 trials with a positive difference (i.e. continuous
data resulted in a higher accuracy than the discrete data), 4 had no difference and
21 had negative difference. There is a positive mean difference but the median
difference is zero and we cannot reject the null hypothesis that H0 : φz = φy

for the alternative H1 : φz < φy using the Wilcoxon’s test for matched pairs.
It is worth noting that we cannot rejected the hyptothesis H0 : µz = µy in
favour of the alternative H1 : µz < µy using a t-test. Despite this result, we use
non-parametric tests due to the decidely non normal nature of the data.

To verify there is in fact no significant difference in the median clustering
accuracy for the models considered, we ran the experiment with unmatched
pairs and 100 models in each sample (v = 100).

Table 2. Accuracy summary for unmatched models

Mean Median Min Max StDev
Continuous 76.801% 73.00% 56.20% 100% 16.96

Discrete 76.798% 72.85% 55.50% 100% 15.83

Table 2 summarises the results. The difference in the mean is neglible, and
using the Mann-Whittley test we cannot reject the null hypothesis H0 : φz = φy

in favour of the alternative H1 : φz 6= φy.

These results clearly demonstrate that discretising the data does not decrease
the accuracy of the k-means clustering algorithm used to cluster data derived
from two models of the form given in Section 3.1 when there are no outliers in the
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data. The next experiment shows that the accuracy of the clustering significantly
improves even when the probability of an outlier is very small.

3.5 Experiment 2: Using a discretised series increases accuracy

Fig. 2. Difference in clustering accuracy for probability of an outlier between 0 and 0.5
with paired samples

To demonstrate the desirability of discretising, we repeat experiment 3 for
various values of p with both paired and unpaired samples. All other parameters
are identical to those used in results presented in Section 3.4 (v = 50, x = 0.5).
Figure 3.5 shows how the accuracy difference changes as the probability of an
outlier increases. Each data represents the median of 50 evaluations, where each
evaluation consists of 20 runs of the k-means algorithm. There is an initial dra-
matic decrease in accuracy of clustering using the continuous data. As the prob-
ability of an outlier increases the accuracy difference between using discretised
and continuous data decreases. This is because the noise eventually overwhelms
the algorithms ability to cluster correctly. To illustrate the effect of outliers
more clearly, Figure 3 shows the results for the same experiment using a smaller
range of p. Clearly the clustering algorithm is performing much better with the
discretised data even when the probability of outlier is very low.

Figure 4 shows a repeat of the experiment described by Figure 3 with un-
paired samples. For contrast with Figure 3, the mean values rather than the
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Fig. 3. Difference in clustering accuracy for probability of an outlier between 0 and
0.05 with paired data

Fig. 4. Difference in clustering accuracy for probability of an outlier between 0 and
0.05 with unpaired data

medians are shown, but the pattern in both averages is the same. A very small
probability of outliers results in a much improved performance when the discre-
tised data is used. Finally, to emphasise the point further, we fixed the number
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of outliers so that each series of 100 data had exactly one outlier and repeated
the paired experiment. Of the 50 trials, 9 resulted in the continuous data having
higher accuracy, in 1 trial the accuracy was the same and in the remaining 40
the accuracy was greater when the discrete data was used.

Using Wilcoxon’s signed-rank test for matched pairs, the null hypothesis
H0 : φd = 0 can be rejected in favour of the alternative H1 : φd < 0 at the 1%
level

4 Conclusions and Future Direction

The clustering of time series is a field that has attracted the interest of researchers
from a wide range of disciplines. This report has provided a brief review of the
techniques used, including a description of the types of models assumed, the
distance metrics employed and the clustering techniques used. Many real world
time series have the unfortunate property that they contain outliers, and the
aim of this research is to demonstrate that if discretised series are used instead
of the continuous data then the effect of outliers can be lessened significantly.

We have demonstrated how, for a certain class of model, distance metric and
clustering algorithm, discretising the series into binary series of above and below
the median can improve the clustering accuracy when there are outliers in the
data, even when the probability of an outlier is very small.

Although there are benefits from using the binary series of above and below
the median when there are outliers, it obviously means some of the information
in the original data is discarded. It is worthwhile discovering how much this
effects the quality of clusters formed.

The obvious way of extending this work would be to assess the effect of
discretisation when the data arises from other models and when alternative
distance metrics and/or clustering algorithms are employed. It is also a logical
extension to apply the technique to real world data.

Working with binary series can often allow for significant speed improvements
with model fitting and clustering techniques, and this could be another benefit
of discretisation.
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Abstract. A temporal association rule is one that has a specified tem-
poral constraint on its validity, for example, it may hold only during a
specific time interval. A relative temporal rule is one that is further qual-
ified according to a temporal relationship with other events or intervals
as opposed to an absolute point in time. Due to their potential appli-
cation, the problem of finding temporal association rules has recently
become an important research topic and is receiving great interest from
researchers. Several models of temporal association rules and algorithms
for discovering such rules have been proposed, although the discovery
of relative temporal rules has received less attention. In this paper, we
survey the work to date in temporal association rule mining and present
a taxonomy of research to date. We also present a new mechanism for
discovering relative temporal association rules.

Keywords: Temporal Data Mining, Relative Temporal Association Rules.

1 Introduction

The problem of finding association rules was originally proposed in 1993 (Agrawal,
Imielinski & Swami 1993) and has been investigated widely for a number of
years. In general, however, this work does not consider any temporal aspect
which might be inherent in the data and thus important information may re-
main undiscovered. While association rule mining can only ever reliably report
on useful knowledge in the dataset under examination, and therefore for the time
period for which the dataset corresponds, there is often an implicit assumption
that the discovered rules are valid universally in time. Moreover, the dataset itself
may contain useful time-dependant observations and thus temporal correlations,
trends and changes may be contained in the data.

As a result, the information that can be conveyed by non-temporal rules can
often be less valuable as their applicability is generalised – there is no way of
knowing when the rules are strongest, or the manner in which they occur in
time. As stated by Chen and Petrounias (2000), the association rule - customers
who buy bread and butter also buy milk during the summer - may be more useful
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than the non-temporal equivalent - customers who buy bread and butter also buy
milk.

Because of this richer rule semantics, the problem of finding temporal asso-
ciation rules has recently become an important research topic and is receiving a
great deal of research interest. A number of temporal association rule models and
algorithms to discover such rules have been proposed (Ale & Rossi 2000, Chen
& Petrounias 2000, Lee, Lin & Chen 2001, Li, Ning, Wang & Jajodia 2001, Oz-
den, Ramaswamy & Silberschatz 1998, Ramaswamy, Mahajan & Silberschatz
1998, Rainsford & Roddick 1999, Wang, Yang & Muntz 1999, Wang, Yang &
Muntz 2001, Zimbrão, de Souza, de Almeida & da Silva 2002) and a survey of
temporal data mining methods and paradigms in general is given in (Roddick &
Spiliopoulou 2002).

The paper is structured in two major parts. The first part presents a survey
of work in temporal association rule mining and discusses a taxonomy for this
research. The second part presents a new method for discovering relative tem-
poral association rules including a discussion of the problems of applying the
Apriori principle to temporally augmented itemsets.

2 Current Research in Temporal Association Rule

Mining

Ozden et al. (1998) discuss the problem of mining cyclic association rules, i.e.,
the association rules that occur periodically over time. Two algorithms and op-
timization techniques to discover cyclic association rules are proposed, although,
this work is limited because it cannot describe real-life concepts such as the first
business day of every month in which the distance between two consecutive such
business days are not always the same. Ramasmamy et al. (1998) extend this
work by considering the discovery of association rules that hold during the time
intervals described by a user-defined calendar algebra expression. The calendar
algebra adopted is considered more powerful in defining temporal patterns, but
to give such expressions the users need to know what temporal patterns they
are interested in.

To provide more flexibility to the user Li et al. (2001) propose a temporal
association rule model that uses calendar schemas as a framework for temporal
patterns, instead of using user-defined calendar algebra expressions. Their work
considers all possible temporal patterns in the calendar schema as opposed to
simply complying with user-supplied temporal expressions.

Ale and Rossi (2000) studied the discovery of association rules that hold
for transactions during the lifetime (lifespan) of items involved in the rules. The
lifetime is intrinsic to the data, so that the users are not required to define it. The
lifetime of items is a period between the first and the last time the items appears
in transactions in the dataset. Similar to this work is the work proposed by Lee et
al. (2001) who studied the problem of mining general temporal association rules
in publication database. A publication database refers to a set of transactions
where each transaction contains an individual exhibition period. Zimbrão et
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al. (2002) extend this work by proposing a new approach to discover calendar-
based association rules with item’s lifespan restriction.

The discovery of the longest interval and the longest periodicity of associ-
ation rules was presented in (Chen & Petrounias 2000) and in (Rainsford &
Roddick 1999), it was proposed to add temporal features to association rules
by associating a conjunction of binary temporal predicates that specify the rela-
tionships between the timestamps of transactions. Visualisation techniques for
viewing these temporal predicate association rules were provided in (Rainsford
& Roddick 2000).

All the above work assumed that each transaction is associated with a tempo-
ral attribute that records the time for which the attributes of the transaction are
valid in the modeled domain. They also assumed that all non-temporal attributes
have binary (boolean) domain. Unlike these work, (Wang et al. 1999, Wang
et al. 2001) has proposed another model by introducing the mining of temporal
association rules for evolving numerical attributes.

Despite this work, to the best of our knowledge, there has not been specific
survey available on the topic of temporal association rule discovery although
(Antunes & Oliveira 2001) provide a survey on the most significant techniques
to deal with temporal sequences while (Roddick & Spiliopoulou 2002) provide a
broad survey of temporal data mining research. In order to fill this gap, in this
paper we first survey the research area.

2.1 Taxonomy of Temporal Association Rules

A number of temporal association models has been proposed, each with differ-
ent reasons and goals. Each model has its own characteristics, differences and
similarities. In this section, we classify the models by looking at them from four
different aspects: the domain in which the models applied, measures of interest-
ingness used, temporal feature associated with the rules, and algorithms used to
discover the rules.

Domain of Attributes It can be seen in Table 1 that most of temporal asso-
ciation rule models discussed here has assumed that all non-temporal attributes
have binary (boolean) domain. It means that the generated temporal association
rules only deal with the association between the presence or absence of items
or attributes. The transaction dataset of these models is normally defined as
follows:
Let I = {i1, i2, . . . , im} be a set of literals, called items. D is a dataset of trans-
actions, where each transaction s consists of a set of items such that s ⊆ I.
Associated with each transaction s is a timestamp ts which represents valid
time of transaction s.

Wang et al. (1999, 2001) studied the mining of temporal association rules
over evolving numerical attributes, instead of binary attributes. This work is
different from the model of quantitative association rules introduced in (Srikant
& Agrawal 1996). In this model, the dataset consists of a set of objects, each of
which has a unique ID and a set of time varying numerical attributes.

simeon
Australiasian  Data Mining Workshop  ADM03

simeon
123



Measures In association rules mining, two measures of rule interestingness that
are commonly used are support and confidence. Both reflect the usefulness and
certainty of discovered rules (Han & Kamber 2001). However, for some of tempo-
ral association rule models, these two measures are considered insufficient and an
additional measure is considered necessary in their proposed model, for example
temporal support (Ale & Rossi 2000), frequency (Chen & Petrounias 2000), tem-
poral confidence (Rainsford & Roddick 1999), and strength and density (Wang
et al. 1999, Wang et al. 2001), as shown in Table 1.

Ale and Rossi (2000) introduce the notion of temporal support to filter the
items with high support but short life. The combination of support and temporal
support is used to determine if an itemset is large. Ie., an itemset is large if it
satisfies the user-specified minimum support and minimum temporal support.

Chen and Petrounias (2000) propose using frequency to measure the pro-
portion of the intervals, during which the rules satisfy minimum support and
minimum confidence, to the intervals in φ(TF ). φ(TF ) represents a set of time
intervals, i.e., φ(TF ) = {P1, P2, . . . , Pn}, where Pi is a time interval. The as-
sociation rules should satisfy the minimum frequency in addition to minimum
support and minimum confidence.

In (Rainsford & Roddick 1999), temporal confidence is used to determine
how strong the temporal relationship between temporal items in the rule. Since
the temporal relationship between items is represented as a binary predicate,
each predicate in the rule must satisfy the minimum temporal confidence.

Wang et al. (2001) propose two new measures, strength and density, to qualify
the validity of rules on evolving numerical attributes. The support, strength,
and density of the rules indicates the frequency of occurrences, concentration
of population, and the degree of non-independence represented by the rules,
respectively.

Temporal Association Rule Types According to (Chen & Petrounias 2000),
a temporal association rule can be represented as a pair < AR, TF >, where
AR is an association rule and TF is temporal feature belongs to AR. Depending
on the interpretation of the temporal feature TF , a temporal association rules
< AR, TF > can be classified as:

– a universal association rule if φ(TF ) = {T}, where T represents the time
domain;

– an interval association rule if φ(TF ) = {itvl}, where itvl ⊂ T is a specific
time interval;

– a periodic association rule if φ(TF ) = {p1, p2, . . . , pn}, where pi ⊂ T is a
periodic interval in cycles;

– a calendric association rule if φ(TF ) = {cal1, cal2, . . . , calm}, where calj ⊂ T
is a calendric interval in a specific calendar.

This classification method is used to classify the temporal association rule
models presented in this paper. However, since certain models cannot be in-
cluded in these classes we have to create two new classes – binary predicate and
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numerical attribute evolution. The universal association rule class is excluded
from our classification because it represents a class of classical association rules
(non-temporal association rules). Table 1 shows five classes in our classification,
namely interval, cyclic, calendric, binary predicate, and numerical attribute evo-
lution. Using this classification, a model can be classified into more than one
class, depending on the temporal feature associated with association rules. Each
temporal association model with its temporal feature is presented in Table 2.

Author Measures Type of Association Rule Attribute
Domain

Supp. Conf. Extra Interval Cyclic Calendric Binary Attr.
Measure Pred. Evol.

Ale & Rossi (200) X X Temporal X Binary
support

Ozden et al. (1998) X X X Binary
Chen & Petrounias (2000) X X Frequency X X Binary
Ramaswamy et al. (1998) X X X Binary
Li et al. (2001) X X X Binary
Rainsford & Roddick
(1999)

X X Temporal X Binary

confidence
Lee et al. (2001) X X X Binary
Zimbrao et al. (2002) X X X X Binary
Wang et al. (1999,2001) X Strength & X Numeric

Density

Table 1. Temporal association rule classification

Author Algorithms Temporal AR Models

Apriori-based Other

Ale & Rossi (2000) X (X ⇒ Y, [t1, t2])
[t1, t2] is a lifespan of X ∪ Y

Ozden et al. (1998) X (X ⇒ Y, c = (l, o))
c is a cycle with length l and offset o

Chen & Petrounias (2000) X (X ⇒ Y, TF )
φ(TF ) = {P1, P2, . . . , Pn}

Ramaswamy et al. (1998) X (X ⇒ Y, C)
C is a calendar expression

Li et al. (2001) X (X ⇒ Y, e)
e is a calendar pattern

Rainsford & Roddick (1999) X X ⇒ Y ∧ P1 ∧ P2 . . . Pn

Pi is a binary temporal predicate
Lee et al. (2001) X PPM (X ⇒ Y, (t, n))

(t, n) is the max. common exhibition period
Zimbrao et al. (2002) X (X ⇒ Y, e, [t1, t2])

e is a calendar pattern
[t1, t2] is a lifespan of X ∪ Y

Wang et al. (1999,2001) X TAR X ⇐⇒ Y
X and Y are conjunctions of att. evolution

Table 2. Temporal association rule models and algorithms
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From the four models in the interval association rule class, each model pro-
vides different meaning to the time interval. In (Ale & Rossi 2000, Zimbrão
et al. 2002), a time interval represents the lifespan of items in the rules, in (Lee
et al. 2001), it represents the maximum common exhibition period of items in
the rules, while in (Chen & Petrounias 2000), it represents any specific time
interval.

We classify the works of Ramaswamy et al. (1998) and Li et al. (2001) into
the calendric association class. (Ramaswamy et al. 1998) introduced the notion
of calendar algebra to describe phenomena of interest in association rules. It is
based on the work reported in (Allen 1983, Leban, McDonald & Forster 1986)
and the implementation reported in (Chandra, Segev & Stonebraker 1994). The
calendar algebra expression defines a set of time intervals that the algorithm
considers in discovering the association rules. The association rules are called
calendric if they have the minimum support and confidence in every time unit
contained in the calendar. The algorithms proposed to discover such rules are
similar to the ones discussed in (Ozden et al. 1998), but they were modified
to deal with calendars, instead of cycles. Li et al. (2001) use calendar schemas
instead of calendar algebra expressions.

Algorithms The algorithms so far proposed to discover temporal association
rules can be divided into two categories, i.e., Apriori-based and non Apriori-
based algorithms. Table 2 shows that all models discussed here can be categorised
as using the Apriori-based algorithms. Two models also proposed new algo-
rithms which are not based on Apriori (Lee et al. 2001, Wang et al. 1999, Wang
et al. 2001). In (Lee et al. 2001) the algorithm Progressive-Partition-Miner
(PPM) is proposed to discover general temporal association rules in a publi-
cation database, while Wang et al. (1999,2001) discuss the TAR algorithm to
discover the temporal association rules on evolving numerical attributes.

In the following sections, we discuss in more detail the Apriori-based algo-
rithms to discover interval association rules, cyclic association rules, calendric
association rules, and temporal predicate association rules. In addition, we also
discuss the optimized algorithms to discover cyclic and calendric association
rules.

2.2 Interval Association Rules

The interval association rule model discovers association rules that hold during
the lifetime of items involved in the rules (Ale & Rossi 2000). The model is
motivated by the observation that it is possible to have association rules with
a high confidence but with little support. During the mining process such rules
may not be discovered as their support is less than the minimum support. as
the denominator in the support calculation is the total number of transactions
in dataset. If the denominator is limited to the total number of transactions
belonging only to the lifetime of items, these rules could be discovered. Therefore,
in this model the search for large itemsets is limited to the lifetime of the itemset’s
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members and each generated rule has an associated time frame, corresponding
to the lifetime of the items participating in the rule.

We will use the following transaction dataset, found in (Ale & Rossi 2000),
to describe how the model works.
Example 3.1: Let I = {A,B, C, D, E, F,G, H, I} and D contain six transac-
tions:

s1 = {A,C, F, H, I}, t: 1
s2 = {A,B,C, G}, t: 2
s3 = {B,C,D,G, I}, t: 3
s4 = {A,C, I}, t: 4
s5 = {C,D,E,H, I}, t: 5
s6 = {A,D, F, G}, t: 6

The lifespan of an item A is represented by a closed interval [ti, tj ], where
ti <T tj , and is denoted by lA. If D is the transaction dataset, then DlA is the
subset of D whose timestamps ti ∈ lA, and |DlA | is the number of transactions
whose timestamps ti ∈ lA. As an example, from the transaction dataset above,
the lifespan of A, B and C is lA = [1, 6], lB = [2, 3] and lC = [1, 5], respectively.
The lifespan of an itemset X is calculated as an intersection of the items’ lifespan
in the itemset. If X = {I1, I2, . . . , In} then its lifespan is lX = lI1

∩ lI2
∩ . . .∩ lIn

.
In the case X = {A,C} then its lifespan is lX = lA ∩ lC = [1, 6] ∩ [1, 5] = [1, 5].

The calculation of support of an itemset X is modified by taking into consid-
eration the itemset’s lifespan. The denominator is not the number of transactions
of the entire dataset |D|, but |DlX |, that is the number of transactions whose
timestamp ti ∈ lX . The support of X in D over its lifespan lX is denoted as
sup(X, lX , D). Thus, the support of X = {A} and Y = {H} is sup(X, lX , D) =
4/6 = 0.67 and sup(Y, lY , D) = 2/5 = 0.40, respectively.

It is possible for the itemset to have high support but short life. As an
example, an item E has support of 100% but its lifespan is short, i.e., |lE | = 1.
The temporal support can be used to filter such items. Therefore, to determine if
an itemset X is large or not the combination of support and temporal support is
used. Given the minimum support σ ∈ [0, 1] and the minimum temporal support
τ , an itemset X is large in its lifespan lX if sup(X, lX , D) ≥ σ and |lX | ≥ τ .

This model proposed the concept of item’s obsolescence. It is used to filter
out the items or itemsets that are considered obsolete. An item whose lifespan
is [ti, tj ] is obsolete at a specified time instant to if t2 < to. It is not necessary
to check for obsolete k-itemsets, for k > 1, because a k-itemset is obsolete if it
contains an obsolete item.

The confidence of a rule X ⇒ Y in [t1, t2], where [t1, t2] is a time frame
corresponding to the lifespan of X ∪ Y , is denoted by conf(X ⇒ Y, lX∪Y , D)
and defined as

conf(X ⇒ Y, lX∪Y , D) = sup(X ∪ Y, lX∪Y , D)/sup(X, lX∪Y , D)

Let T = {. . . , to, t1, t2, . . .} be a set of time instants, countably infinite, over
which a linier order <T is defined, where t1 <T t2 means that t1 occurs before
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t2. Given the transaction dataset D (as defined in section 2.1), the minimum
support σ, the minimum temporal support τ , and the minimum confidence γ,
the interval association rule X ⇒ Y [t1, t2] holds in D if sup(X∪Y, lX∪Y , D) ≥ σ,
|lX∪Y | ≥ τ and conf(X ⇒ Y, lX∪Y , D) ≥ γ, where lX∪Y = [t1, t2].

The paper asserts that any existing algorithm for association rule discovery,
for example (Agrawal & Srikant 1994, Brin, Motwani, Ullman & Tsur 1997,
Park, Chen & Yu 1995), can be modified to discover these interval association
rules. Algorithm 2.1 is a modified version of the Apriori algorithm (Agrawal &
Srikant 1994) to find such rules. The algorithm consists of two phases. First, the
generation of every itemset X such that X is large in its lifespan lX , and second,
finding the rules from every large itemset X. The first phase consists of several
passes. In the first pass, to obtain the large 1-itemsets L1, the algorithm not only
counts the item occurrences and records its lifespan but also counts the number
of transactions in this lifespan so that the support of the item in its lifespan
can be calculated. In subsequent passes, for each pass k > 1, the candidate
itemsets Ck are generated from the large itemset Lk−1, using Apriori’s method
for candidate generation. The lifespan of a k-itemset is determined as follows: if
the k-itemset U is obtained by joining (k − 1)-itemsets V and W , the lifespan
of U is the intersection of the lifespan of V and W .

The second phase can be done by using Apriori’s method of rules generation.
For every large itemset Z it is required to find the rules X ⇒ (Z − X)[t1, t2]
such that sup(Z, lZ , D)/sup(X, lZ , D) ≥ γ, for each X ⊂ Z. In computing the
rule confidence, the value of sup(X, lZ , D) is estimated by using the value of
sup(X, lX , D). The reason for doing this is to avoid recalculating the support for
2k − 2 itemsets X in lZ .

Algorithm 2.1 Find association rules in items’ lifespan

1: // Phase 1: Find all large itemsets X in lX
2: L1 = {large 1-itemsets}
3: for (k = 2; Lk−1 6= ∅; k + +) do

4: Ck = AprioriGen(Lk−1)
5: for all transaction s ∈ D do

6: Count the support of all candidates in Ck

7: end for

8: Lk = {X ∈ Ck|sup(X, lX , D) ≥ σ and |lX | ≥ τ}
9: end for

10: // Phase 2: Generate the rules
11: for all large itemset Z ∈ Lk, k ≥ 2 do

12: genrules(Z)
13: end for
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2.3 Cyclic Association Rules

The concept of cyclic (periodic) association rules and the mining tasks for dis-
covering such rules was described in (Ozden et al. 1998). An association rule is
called cyclic if the rule has the minimum confidence and support at regular time
intervals. Such a rule is not required to hold for the entire transactional dataset,
but rather only for transactional data in a particular periodic time interval.

In order to discover cyclic association rules, the model assumes that the unit
of time (hour, day, week, month, etc.) is given by the user. The ith time unit is
denoted by ti, i ≥ 0, and corresponds to the time interval [i.t, (i + 1).t]. Given a
transaction dataset D, a set of transactions executed in ti is denoted by D[i].

A cycle c is a tuple (l, o) consisting of length l (multiples of the time unit)
and an offset o (the first time unit in which the cycle occurs), 0 ≤ o ≤ l. A time
unit ti is part of a cycle c = (l, o) if o = i mod l holds. For example, if the unit
of time is an hour, every fourth hour starting from the 3rd hour (3rd, 7th,. . .) is
part of cycle c = (4, 3).

The support of an itemset X in D[i] is the fraction of transactions in D[i] that
contain X. The confidence of a rule X ⇒ Y in D[i] is the fraction of transactions
in D[i] containing X that also contain Y . Given the minimum support σ and
the minimum confidence γ, an association rule X ⇒ Y holds in time unit ti if
the support of X ∪ Y in D[i] exceeds σ and the confidence of X ⇒ Y in D[i]
exceeds γ.

An association rule has a cycle c = (l, o) if the association rule holds in every
ith time unit starting with time unit to. Thus, if the unit of time is an hour and a
rule X ⇒ Y holds during the interval 8am-9am every day (i.e., every 24 hours),
then X ⇒ Y has a cycle c = (24, 8). An association rule can have more than one
cycle. For example, if X ⇒ Y holds during the interval 8am-9am and 4pm-5pm
every day, then X ⇒ Y has two cycles c1 = (24, 8) and c2 = (24, 16).

A cycle can be a multiple of other cycles. A cycle (li, oi) is a multiple of
another cycle (lj , oj) if lj divide li and (oj = oi mod lj). From this definition,
a cycle (24, 15) is a multiple of a cycle (12, 3). Therefore, it is only interesting
to discover cyclic association rules with ‘large’ cycles, i.e., the cycle that is not
multiple of any other cycle.

Two algorithms are proposed to discover cyclic association rules. The first al-
gorithm, called sequential algorithm, is the extension of non temporal association
rule mining techniques which treats association rules and cycles independently.
The second algorithm, which is called interleaved algorithm, uses optimization
techniques for discovering cyclic association rules. This section discusses the se-
quential algorithm. The interleaved algorithm will be discussed in Section 2.6.

The sequential algorithm consists of two phases. First, the generation of the
association rules that hold in each time unit. Second, the discovery of cyclic
association rules using the cycle detection procedure as shown in Algorithm 2.2.

The first phase can be done using one of the existing methods (Agrawal &
Srikant 1994, Savasere, Omiecinski & Navathe 1995). In (Ozden et al. 1998),
the implementation is based on the Apriori algorithm from (Agrawal & Srikant
1994). In the second phase, it is required to represent each association rule as
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Algorithm 2.2 Find cyclic association rules

1: // Phase 1: Generate rules for each time unit
2: for all time unit ti do

3: Generate large itemsets in ti

4: Generate the rules from the large itemsets in ti

5: end for

6: // Phase 2: Detect large cycles
7: Convert each rule into binary sequence
8: for all binary sequence do

9: Generate the set of cycles for each rule
10: Discover the large cycles from the set of cycles
11: end for

a binary sequence. In this representation, ones correspond to the time units
in which the rule holds and zeros correspond to the time units in which the
rule does not hold. For example, the binary sequence 001100010101 represents
the association rule X ⇒ Y holds in D[2], D[3], D[7], D[9], and D[11]. After
each association rule is represented in a binary sequence, the cycle detection
procedure can be started to discover cyclic association rules. From the above
example the cycle detection procedure will discover a rule X ⇒ Y has a cycle
c = (4, 3) because the rule holds in every fourth time unit starting from time
unit t3, followed by t7 and t11.

The cycle detection procedure is composed of two steps. In the first step, the
sequence is scanned. Each time a zero is encountered at a sequence position i,
candidate cycles (j, i mod j), 1 ≤ j ≤ m, where m is the maximum cycle length
of interest, are eliminated from the set of candidate cycles. Initially, the set of
candidate cycles contains all possible cycles. This step completes whenever the
last bit of the sequence is scanned or the set of candidate cycles becomes empty,
whichever is first. In the second step, large cycles (cycles that are not multiples of
any existing cycles) are detected. This can be done by eliminating cycles that are
not large as follows: starting from the shortest cycle, for each cycle ci = (li, oi)
eliminate each other cycle cj = (lj , oj) from the set of cycles if lj is a multiple
of li and oi = oj mod li) holds.

2.4 Calendric Association Rules

In this section, we discuss the calendric association rules as described in (Li
et al. 2001). In order to discover calendric association rules, the user needs only
to give a simple calendar patterns belonging to a calendar schema. A calendar
schema is a relational schema R = (fn : Dn, fn−1 : Dn−1, . . . , f1 : D1). Each
attribute fi is a calendar unit name such as year, month, and week etc. Each
domain Di is a finite subset of the positive integers. Given a calendar schema
R = (fn : Dn, fn−1 : Dn−1, . . . , f1 : D1), a calendar pattern on the calendar
schema R is a tuple on R of the form 〈dn, dn−1, . . . , d1〉, where di is in Di or
the wild-card symbol ”*”. Each calendar pattern represents the time interval
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given by a set of tuples in Dn x Dn−1 x . . . x D1. As an example, found in (Li
et al. 2001), a calendar schema may be (year:{1995, 1996, . . ., 1999}), month:{1,
2, . . ., 12}, day:{1, 2, . . ., 31}). The calendar pattern (1999, 12, *) represents
every day in December, 1999.

A calendric association rule over calendar schema R is a pair (r, e), where r
is an association rule and e is a calendar pattern on R. The paper defines two
classes of calendric association rules: precise-match association rules and fuzzy-
match association rules. Precise-match association rules require the rules to hold
during every interval while fuzzy-match association rules require the rules to
hold during a significant fraction of these intervals. More formal definition of
precise-match and fuzzy-match association rules can be stated as follows.

1. (Precise match) Given a calendar schema R and a set of timestamped trans-
actions T , a precise-match association rule (r, e) holds in T if and only if the
association rule r holds in T [t] for each basic time interval t covered by e.

2. (Fuzzy match) Given a calendar schema R, a set of timestamped transactions
T , and a real number m (match ratio), where 0 < m < 1, a fuzzy-match
association rule (r, e) holds in T if and only if the association rule r holds
in T [t] for at least 100m% of the basic time intervals t covered by e.

Similar to the problem of finding non-temporal association rules, the problem
of finding calendric association rules can also be divided into two subproblems.
First, finding all large itemsets for all calendar patterns, and second, generating
calendric association rules using the large itemsets and their calendar patterns.
The work in (Li et al. 2001) only focuses on finding calendric large itemsets. Two
types of algorithms for finding calendric large itemsets are proposed and both
are based on Apriori algorithm (Agrawal & Srikant 1994): direct-Apriori algo-
rithms that treat each basic time interval individually and directly apply Apriori
method (Agrawal & Srikant 1994) for candidate generation and temporal-Apriori
algorithms that are optimized by exploiting the relationship among calendar pat-
terns. In this section we only discuss the direct-Apriori algorithms to find both
classes of calendric association rules. The temporal-Apriori algorithms will be
discussed in section 2.6.

Algorithm 2.3 shows the direct-Apriori algorithm to generate precise-match
and fuzzy-match large itemsets. In pass k of the algorithm, where k > 1, the
processing of each basic time interval eo consists of three phases. The first phase
generates candidate k-itemsets for each basic time interval from large (k − 1)-
itemsets. This can be done by using Apriori’s method for candidate generation
as follows: Ck(eo) = AprioriGen(Lk−1(eo)). The second phase scans the trans-
actions whose timestamps are covered by the basic time interval, and discovers
large k-itemsets for this basic time interval. These two phases are the same for
both precise-match and fuzzy-match. In the third phase, the discovered large
k-itemsets for the basic interval, Lk(eo), are used to update the large k-itemsets
for each star calendar pattern e that covers the basic time interval. The up-
date procedure for precise-match and fuzzy-match is different. For precise-match,
the update is performed by intersecting the set of large k-itemsets for the ba-
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sic interval eo with the set of large k-itemsets for the calendar pattern e, i.e.,
Lk(e) = Lk(e) ∩ Lk(eo). In the first update, Lk(e) = Lk(eo).

Algorithm 2.3 Find precise-match and fuzzy-match large itemsets

1: for all basic time interval eo do

2: L1(eo) = {large 1-itemsets in T [eo]}
3: for all star patterns e that covers eo do

4: update L1(e) using L1(eo);
5: end for

6: end for

7: for (k = 2; ∃ a star calendar pattern e such that Lk−1(e) 6= ∅;k + +) do

8: for all basic time interval eo do

9: // Phase 1: Generate candidates
10: generate candidate Ck(eo);
11: // Phase 2: Scan the transactions
12: for all transactions T ∈ T [eo] do

13: // increment the count of c ∈ Ck(eo) contained in T

14: subset (Ck(eo), T )
15: end for

16: Lk(eo) ={c ∈ Ck(eo)|sup(c) ≥ σ}
17: // Phase 3: Update star calendar patterns
18: for all star patterns e that covers eo do

19: update Lk(e) using Lk(eo);
20: end for

21: end for

22: return 〈Lk(e), e〉 for all star calendar pattern e

23: end for

The update procedure for fuzzy-match is more complex than that for precise-
match. The procedure is presented in Algorithm 2.4. Each large itemset l ∈ Lk(e)
is associated with the counter updatecounter which is initially set to 1.

Algorithm 2.4 Fuzzy-match Update

1: N = the number of basic time interval covered by e

2: n = the n-th update to Lk(e)
3: m = match ratio
4: if Lk(e) has never been updated then

5: Lk(e) = Lk(eo)
6: l.updatecount = 1 for each l ∈ Lk(e)
7: else

8: l.updatecount = 1 for each l ∈ Lk(eo) − Lk(e)
9: l.updatecount + + for each l ∈ Lk(eo) ∩ Lk(e)

10: Lk(e) = {l ∈ Lk(e) ∪ Lk(eo)|l.updatecount + (N − n) ≥ m.N}
11: end if
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2.5 Temporal Predicate Association Rules

The temporal predicate association rule was first proposed by (Rainsford &
Roddick 1999). It extended the association rules by adding to the rules a con-
junction of binary temporal predicates that specify the relationships between
the timestamps of transactions. Binary temporal predicates are defined using
thirteen interval based relations proposed by Allen (1983) and the neighbor-
hood relationships defined by Freksa that allow generalisation of relationships
(Freksa 1992).

Let I = {i1, i2, . . . , im} be a set of items. Let D be a dataset of transactions,
where each transaction s consists of a set of items such that s ⊆ I. Given an
itemset X ⊆ I, a transaction s contains X if and only if X ⊆ s. Associated
with each transaction is temporal attributes that record the time for which the
item is valid. Let P1∧P2 . . .∧Pn be a conjunction of binary temporal predicates
defined on attributes contained in either X or Y , where n ≥ 0. The temporal
predicate association rule is a rule of the form X ⇒ Y ∧ P1 ∧ P2 . . .∧ Pn, where
X ⊆ I, Y ⊆ I and X ∩ Y = ∅.

The temporal confidence is used to determine how strong the temporal rela-
tionship between temporal items in the rule. The rule X ⇒ Y ∧P1 ∧P2 . . .∧Pn

holds in a dataset D with the confidence c if and only if at least c% of transac-
tions in D that contain X also contain Y . Likewise, each predicate Pi holds with
a temporal confidence tcpi if and only if at least tc% of transactions in D that
contain X and Y also satisfy Pi. Following is an example of temporal predicate
association rule found in (Rainsford & Roddick 1999):

policyC ⇒ investA, productB | 0.87 ∧
during(investA,policyC) | 0.79 ∧
before(productB,investA)|0.91

An interpretation for this rule is:

The purchase of investment A and product B are associated with insur-
ance policy C with a confidence factor 0.87. The investment A occurs
during the period of policy C with a temporal confidence factor 0.79 and
the purchase of product B occurs before investment A with a temporal
confidence factor of 0.91.

The algorithm to discover temporal predicate association rules consists of four
phases. The first phase of the algorithm can be performed using any association
rule algorithm. During this phase the temporal attributes associated with the
items are not considered. In the second phase all of possible pairings of temporal
items in each generated rule are generated. For example, if the association rule
is AB ⇒ C then there are three possible pairings, AB, AC, and BC. In the
third phase, the dataset is scanned and each tuple is checked to see if it supports
a given rule. Finally, the aggregation of temporal relationships found in this
phase is then concatenated with the original rule to generate temporal predicate
association rules.
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2.6 Improving Efficiency of the Algorithms

In mining non-temporal association rules, many variations of the Apriori algo-
rithm that focus on improving the efficiency of the original algorithm have been
proposed. One of the goals is to reduce the search space for large itemsets. In tem-
poral mining the search space will be even larger than in non-temporal mining
and thus optimization is required. This section discusses optimization techniques
employed in discovering cyclic association rules and calendric association rules.

Cycle Pruning, Cycle Skipping and Cycle Elimination In the sequential
algorithm (as discussed in Section 2.3), the cycle detection procedure has to scan
and process every bit position of binary sequence sequentially. By exploiting the
relationship between cycles and large itemsets this procedure can be optimized
so that the sequence position that cannot be part of any of the candidate cycles is
skipped. In order to do this the interleaved algorithm employs three optimization
techniques: cycle-pruning, cycle-skipping, and cycle-elimination.

An itemset, in the same way an association rule, can be represented as a
binary sequence where ones correspond to the time units in which the itemset
is large and zeros correspond to the time units in which the itemset is not
large. A cycle can also be represented as a binary sequence. A cycle c = (l, o) is
represented as a binary sequence with length l and the value of bit position o
one. For example, a cycle c = (4, 3) is represented as a binary sequence 0001.

Cycle-pruning is based on the property that if an itemset X has a cycle (l, o),
then any subset of X has the cycle (l, o). It implies that, any cycle of itemset X
must be a multiple of a cycle of an itemset that is subset of X and the number
of cycles of an itemset X is less than or equal to the number of cycles of any
subset of X. For example, if 010 is the only large cycle of A, and 010 is also the
only large cycle of item B, then cycle-pruning implies that the itemset AB can
have only the cycle 010 or its multiples.

Cycle-elimination is based on the property that if an itemset X is not large
in time D[i], then X cannot have the cycle (j, i mod j), lmin ≤ j ≤ lmax. Cycle-
elimination can be used to discard cycles that an itemset X cannot have as
soon as possible. So if lmax is the maximum cycle length and the support for an
itemset A is not large for the first lmax time units, then cycle-elimination implies
that A cannot have any cycles.

Cycle-skipping is based on the property that if time unit ti is not part of a
cycle of an itemset X then there is no need to calculate the support of X in time
segment D[i].

The interleaved algorithm consists of two phases. In the first phase, the algo-
rithm generates the cyclic large itemsets. In the second phase, cyclic association
rules are generated from cyclic large itemsets. The first phase of the algorithm is
shown in Algorithm 2.5. IHTk contains candidate k-itemsets and their potential
cycles, and THT contains the itemsets that are active in time unit t. An itemset
is active in time unit t if it has a cycle that t participates in. Cycle-skipping de-
termines, from the set of candidate cycles for k-itemsets, the set of k-itemsets for
which support will be calculated in time segment D[i]. For a candidate itemset
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X, if X is not large at time segment ti then by applying cycle-elimination each
cycle c = (l, o), where (o = i mod l) holds, is removed from the set of potential
cycles of X.

Algorithm 2.5 Find cyclic large itemsets

1: k = 1
2: while there are still candidate in IHTk with potential cycles do

3: for all time unit ti do

4: // apply cycle-skipping
5: insert active itemsets from IHTk into THT

6: count support of each itemset in THT in ti

7: for all X ∈ THT do

8: if sup(X) < σ then

9: // apply cycle-elimination
10: delete corresponding cycles of itemset X

11: end if

12: end for

13: empty THT

14: end for

15: verify actual cycles of each member of IHTk

16: // apply cycle-pruning
17: IHTk+1 = generate new candidate of size k + 1
18: k = k + 1
19: end while

Temporal AprioriGen and Horizontal Pruning Two optimization tech-
niques discussed in this section focus on improving the candidate generation
phase (phase 1) of the direct-Apriori algorithm shown in Algorithm 2.3. It can
be seen that during the processing of each basic time interval eo, the algorithm
has to count the support of all the potentially large k-itemsets generated by
Ck(eo) = AprioriGen(Lk−1(eo)). It is considered as inefficient because even if a
candidate k-itemset could be large for eo, it can be ignored if it cannot be large
for any of the star calendar patterns that cover eo.

Therefore, in order to optimize the candidate generation, the computation of
Ck(eo) is based on Lk−1(e1)), where e1 is 1-star pattern that covers eo, instead
of Lk−1(eo)). The optimized candidate generation procedure, called temporal
AprioriGen, is shown in Algorithm 2.6.

As an example, let the calendar schema R = (week : {1, . . . , 5}, day :
{1, . . . , 7}). Let large 2-itemsets L2(〈3, 2〉) = {AB,AC,AD,AE,BC,BD, CD,CE},
L2(〈∗, 2〉) = {AB,AC,AD,BC,BD, CE}, and L2(〈3, ∗〉) = {AB,AC,AD,BD,CD}.
The direct-Apriori algorithm generates the set of candidate large 3-itemsets
C3(〈3, 2〉) from L2(〈3, 2〉). The result is C3(〈3, 2〉) = {ABC, ABD,ACD, ACE,BCD}.
On the other hand, if the temporal AprioriGen is used, it first generates C3(〈∗, 2〉) =
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Algorithm 2.6 Temporal AprioriGen

1: Ck(eo) = ∅
2: for all 1-star patterns e1 that covers eo do

3: Ck(eo) = Ck(eo) ∪ AprioriGen(Lk−1(e1))
4: end for

{ABC, ABD} and C3(〈3, ∗〉) = {ABD, ACD}, then followed by C3(〈3, 2〉) =
C3(〈∗, 2〉) ∪ C3(〈3, ∗〉) = {ABC, ABD,ACD}.

Even though the temporal AprioriGen procedure has been able to reduce the
number of candidate k-itemsets generated, this number can be further reduced by
using the second optimization technique, horizontal pruning, shown in Algorithm
2.7.

Algorithm 2.7 Horizontal Pruning

1: if ∃ 1-star pattern e1 that covers eo such that Lk(e1) has not been updated even
once then

2: return Ck(eo)
3: end if

4: P = ∅
5: for all 1-star patterns e1 that covers eo do

6: P = P ∪ Lk(e1)
7: end for

8: return (Ck(eo) ∩ P )

Continuing from an example above, suppose when the basic interval 〈3, 2〉
is being processed, we already have L3(〈∗, 2〉) = {ABD} and L3(〈3, ∗〉) =
{ABD, ACD}. Given the generated set of candidate large 3-itemsets C3(〈3, 2〉) =
{ABC, ABD,ACD}, it can be further pruned by C3(〈3, 2〉) = C3(〈3, 2〉) ∩
(L3(〈3, ∗〉) ∪ L3(〈3, ∗〉)) = {ABD, ACD}.

3 A New Method for Relative Temporal Association

Rule Mining

We now discuss a new method for mining relative temporal association rules and
in particular some issues that pose problems in the process.

A relative temporal association rule, for the purposes of this work, is one
structured as follows:

antecedents
temprel
=⇒ consequents, quals (1)

where temprel is a temporal relationship taken from, for example, those sug-
gested by Allen, Freksa and others, and quals is some rule quality qualifications
(such as support).
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In our current work, we propose here a new relative temporal association
rule mining model. The model is proposed to discover an important form of
temporal association rules which are useful but cannot be discovered with the
existing temporal association rule mining framework. Taking medical data as an
example, our rule can have the following form:

A,B,C
<

=⇒ D,E (2)

which is equivalent to an assertion that patients who have attributes (such as
symptoms) A, B and C are also likely to later have recorded attributes D and
E. Ie. in this rule, the < annotation means that A, B and C occur before D and
E.

Unlike temporal association rule models discussed above, the proposed model
takes into account transaction-id and transaction timestamp. For example, con-
sider a scenario in which a patient is admitted to hospital at time ti with symp-
tom A. Later, at time tj , the patient is readmitted with symptoms B and C.
Other models consider this scenario as two different transactions. However, the
proposed model offers the user the ability to view it as one (temporal) trans-
action. It means that each transaction-id can have more than one timestamp.
Even though our transaction dataset is similar to the one used for mining se-
quential patterns discussed in (Agrawal & Srikant 1995), the rules generated by
the proposed model are different.

Note that the temporal nature of the rule means that, unlike static rules,
the same attribute can occur on both sides of the rule. Ie., in this model, it is
possible to have the following rules:

A,B
<

=⇒ A (3)

which means that attribute A and B implies the continuation or reoccurrence
of A in later periods, while

D
>

=⇒ CD (4)

means that attribute C and D were probably preceded by D in earlier time
periods.

The algorithm consists of four phases: Sort phase, Litemset phase, Transfor-
mation phase, and Relative litemset phase.
1. Sort Phase. In this phase, the original transaction dataset is sorted, with
customer-id as the primary key and transaction-time as the secondary key, as
shown in Table 3.

2. Litemset Phase. In this phase, we find the set of all large itemsets (Litem-
sets) by using Apriori algorithm. In doing so, the definition of support is modi-
fied. Originally, the support of an itemset is defined as the fraction of transactions
in which an itemset is present. Here, the support an itemset is defined as the
fraction of transactions in which an item appears (at any time). For example,
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CustID Timestamp Items
1 25-Jun-03 H
1 30-Jun-03 C
2 10-Jun-03 A B D
2 15-Jun-03 C
2 20-Jun-03 D F G
2 25-Jun-03 B
3 25-Jun-03 C E G
4 25-Jun-03 C
4 30-Jun-03 D G
4 25-Jul-03 D
4 30-Jul-03 B

Table 3. Sorted dataset

even though the item B appears three times in the transaction dataset, its sup-
port is 2 as it appears for only the second and fourth transaction. By taking a
minimum support of 2, the large itemsets that can be generated from transaction
dataset above is shown in table 4.

Large Itemsets Support Mapped To
{B} 2 1
{C} 4 2
{D} 2 3
{G} 3 4
{DG} 2 5
Table 4. Large Itemsets

3. Transformation Phase. Before the transformation phase takes place, the
set of large itemsets generated in previous phase is first mapped into a set of in-
tegers, as shown in Table 4, column three. The result of transformation phase is
shown in table 5. Each transaction is replaced by the set of all litemsets contained
in that transaction. As an example, the first transaction of the second customer
(A B D H) is transformed into a set of litemset {(D), (H)}. If a transaction does
not contain any litemset, it is not retained in the transformed sequence. The first
transaction of the first customer does not contain any litemset, thus it is drop
from the transformed customer sequence, as shown in table 5. If a transformed
customer sequence only contains one set of litemsets, this sequence is drop from
the transformed sequence. The customer sequence that has only one set of litem-
set will not produce relative itemsets. Therefore, customer sequence of the first
and the third customer are drop from the transformed sequence. However, they
are still being used to the count of total number of customers.

4. Relative Itemset Phase. This phase is used to generate large relative
itemsets. The algorithm is based on the Apriori algorithm and is shown in Al-
gorithm 3.1.
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1-Litemset

(1)

(2)

(3)

(4)

(5)

L1 C2

2-Litemset

(1 1)

(1 2)

(1 3)

(1 4)

(1 5)

(2 1)

(2 2)

(2 3)

(2 4)

(2 5)

(3 1)

(3 2)

(3 3)
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(3 5)

(4 1)
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(4 5)
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(5 4)

(5 5)
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(2 3)
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2

1

2

1

1

2

0
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0
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2

0

1

0

0
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Generate
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Relative Litemset Phase: to generate large relative itemsets

2-Litemset

(2 1)

(2 3)

(2 4)

(2 5)

(3 1)

(3 3)
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(5 1)
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(2 1 1)
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(2 3 4)

(2 3 5)
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Fig. 1. Generation of candidate and large relative itemsets
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Cust ID Original Transformed After
Customer Sequence Customer Sequence Mapping

1 (H) (C) {(C)}
2 (A B D H) (C) (D F G) {(B), (D)} {(C)} {(D), (G), (DG)} {B} {1, 3} {2} {3, 4, 5} {1}
3 (C E G) {(C), (G)}
4 (C) (D G) (D H) {(C)} {D), (G), (DG)} {(D)} {B} {2} {3, 4, 5} {3} {1}

Table 5. Transformed dataset

Algorithm 3.1 Generate Large Relative Itemset

1: L1 = {Large relative 1-itemset};
2: for (k = 2; Lk−1 6= ∅; k + +) do

3: Ck = Candidate generation from Lk−1;
4: for each customer sequence s in the dataset do

5: Increment the count of all candidate in Ck that are contained in s;
6: end for

7: Lk = Candidate in Ck with minimum support;
8: end for

In the algorithm, Lk is a set of large relative k-itemsets. The set of large
relative 1-itemset L1 is initialized by using the the set of large itemsets generated
in the litemset phase. The candidate generation to obtain Ck is generated by
joining Lk−1. Let p and q be large relative k − 1-itemsets in Lk−1. In Apriori, p
and q are joinable if their first (k − 2) items are in common, and the resulting
itemset is p[1]p[2] . . . p[k−1]q[k−1], where p[k−1] < q[k−1]. In this algorithm,
the requirement that p[k − 1] < q[k − 1] is removed, thus the itemset p can be
joined to itself. The join procedure is shown below:

insert into Ck

select p[1], p[2], . . . , p[k − 1], q[k − 1]
from Lk−1 p, Lk−1 q
where p[1] = q[1], . . . , p[k − 2] = q[k − 2]

The pruning procedure will delete all candidate c ∈ Ck if some k− 1-itemset
of c is not in Lk−1.

Using the transformed dataset in Table 5, the generation of candidate and
large relative itemsets is shown in Figure 1. In this figure, the k-itemset (I1I2 . . . Ik)
represents the relationship I1 < I2 < . . . < Ik. Therefore, the large relative 3-
itemset (2 5 1) represents the relationship 2 < 5 < 1, which has the interpreta-
tion that C occurs before DG and DG occurs before B.

4 Conclusions and Future Work

In this paper, we have surveyed temporal association rule models. In order to
do that, we have classified the models based on four different aspects of the
models: attribute domains, measures, temporal features, and algorithms. This
is followed by the discussion of the algorithms to discover interval association
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rules, cyclic association rules, calendric association rules, and binary predicate
association rules. We also discuss how the algorithms to discover cyclic and
calendric association rules can be optimized.

We also discuss a new method to generate relative temporal association rules.
At this stage the basic algorithm is complete but substantial further work is
required in order to optimise and operationalise the ideas. Nevertheless, the
algorithm looks promising and all indications are that this will be a useful new
method.
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Abstract

This paper studies drug-reaction relationships using the system organ class
grouping of reactions from Australian drug safety data. For each drug we define
a vector of weights which indicates the “probability” of occurrence of reactions.
Such a representation of drug-reaction associations and the accuracy of established
representations are evaluated applying two algorithms: the well-known text cat-
egorization algorithm BoosTexter and a new algorithm introduced in this paper.
We use different evaluation measures. The ways of developing reasonable distance
measures is investigated and discussed. This novel use of text categorization type
algorithms provides a broader perspective for the development of new algorithms
to study drug-reaction relationships.
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1 Introduction

An Adverse Drug Reaction (ADR) is defined by the World Health Organization (WHO) as:
“a response to a drug that is noxious and unintended and occurs at doses normally used in
man for the prophylaxis, diagnosis or therapy of disease, or for modification of physiological
function” [34]. ADRs are estimated to be the fourth leading cause of death in the USA [26],
and the amount of published literature on the subject is vast [1]. Some of the problems con-
cerning ADRs are discussed in our research report [19]. Many approaches have been tried for
the analysis of adverse reaction data, such as: Fisher’s Exact Test and matched pair designs
(McNemar’s test) [30], Reporting Odds Ratio (ROR), and Yule’s Q [32]. One approach that
has had some success is the Proportional Reporting Ratios (PRR) for generating signals from
data in the United Kingdom. One problem with this method is that very striking signals
for a particular drug will reduce the magnitude of the PRR for other signals with that drug
due to inflation of the denominator [12]. The Norwood-Sampson Model has been applied to
data in the United States of America and approved by the Food and Drug Administration
(FDA), despite some bias inherent in the model – Hillson et al. propose a modification of the
Norwood-Sampson method to adjust for this [17]. A common approach to the assessment of
ADRs uses the Bayesian method [8]. For example, the Bayesian confidence propagation neural
network (BCPNN) [2], and an empirical Bayesian statistical data mining program called a
Gamma Poisson Shrinker (GPS) [10], and the Multi-item Gamma Poisson Shrinker (MGPS)
[28], which have been applied to the United Sates Food and Drug Administration (FDA)
Spontaneous Reporting System database. The Bayesian method has met with success, but
is very exacting regarding the quantification of expectations [18]. Each method has its own
advantages and disadvantages in respect of applicability in different situations and possibilities
for implementation [32]. However, these methods are still prone to problems of interpretation
such as Simpson’s paradox, when two variables appear to be related because of their mutual
association with a third variable [10]. The relative merits of these methods is difficult to assess
due to the lack of a ‘gold standard’.

One of the main problems of ADR is the following: given a patient (the set of drugs taken
and reactions reported) to identify drug(s) which are responsible for these reactions. Such
drugs are termed, in the ADRAC database, “suspected” drugs. The accurate definition of
suspected drugs for each report has a very important effect on the quality of the database for
future study of drug-reaction relationships.

The authors of this paper are developing an alternative approach to the ADR problem [19],
[20], [21]. We formulate the main goal of our ADR study as follows: Given a patient having
taken some drug(s), to be able to predict what kind of reaction(s) can occur. This problem
relys on the availability of suitable data from a sufficient number of reports of ADR cases using
well developed methods [1], [3], [4], [15], [23], [26], [29].

In general, the necessary information can be divided into two groups: individual patient
information including “reason for use”, “history” and so on, and information about drug(s)
including dosage, duration and so on.

We simplify the main ADR problem assuming that the main goal can be achieved by solving
the following problems separately:

P1. To study drug-reaction relationships not involving any other patient information;
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3

that is, for each drug to define all the possible reactions that can occur (with corresponding
weights).

P2. To predict the possible reaction(s) for a particular patient using both the patient
information and the drug-reaction relationships, which requires data mining techniques.

The study of useful information about patients and the collection of such kinds of informa-
tion are important problems [15], [22] and there is an initiative to add consumer ADR reporting
[7], [9], [13], [31]. In ADRAC data that we consider in this paper, some data fields are very
poorly presented for easy analysis. This is particularly the case with drug dosage information
as well as other important fields having many records with missing values (see [19]), which
highlights the advantage of studying the problems P1 and P2 separately.

In this paper we will consider the first problem P1. There are some issues which complicate
the study of this problem: dosages, frequency and duration of drugs taken. The use of dosage
information is difficult because in the ADRAC data different units (liters, grams, and so on),
which makes standardization and scaling a significant problem. At this stage of investigation
we decided to neglect the dosage information and to apply two different values: “Yes” – if
drug was taken and “No” if not. This is, a common assumption used by many researchers
(because of the assumption of normal dose in the definition of an ADR – see above), although
not explicitly stated (for example see – [11], [14], [25], [33], [36]).

By understanding the drug-reaction relationship in the absence of information about other
factors influencing this relationship we expect to be able to establish a clearer relationship
between drugs and reactions. When these relationships become characterized more clearly,
this knowledge can be applied to the more general study of the total dataset. Another reason
for focussing primarily on drugs and reactions relates to the inconsistent quality and quantity
of relevant data on factors which also play a role in the drug-reaction association.

1.1 ADRAC Data

The Australian Adverse Drug Reaction Advisory Committee (ADRAC) database has been
developed and maintained by the Therapeutic Goods Administration (TGA) with the aim to
detect signals from adverse drug reactions as early as possible. The ADRAC data contains
137,297 voluntarily reported adverse drug reaction records involving 5057 different drugs, based
on the ‘drug dictionary’ used by ADRAC of 7416 different drug terms, and 1224 different
reactions, based on 1392 different reaction terms. A more detailed account of the ADRAC
database is given in [19]. Much of this data on ADRs is derived from voluntary reporting,
some of the problems and advantages of such a reporting system are discussed in [3], [23], [29],
[33], [5], [16], [24].

The biggest challenge in summarizing safety data is the need to consolidate the massive
amount of data into a manageable format. One way is to group the safety data into K classes
characterized by body systems and determined in conjunction with underlying disease and
treatments involved. Such pooling of data through coding is especially helpful for rare events
[6], [23]. ADRAC uses 18 systems organ class (SOC) reaction term classes, which we use to
group the 1224 different reaction terms in the ADRAC data collected from 1971–2001 and
called this dataset Mallreac. The number of reaction terms and number of occurrences for
each class is shown in Table 1, where the occurrence is a cumulative count for each reaction
class.
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Table 1: System Organ Classes in ADRAC *Number of reaction terms in class †Total
occurrence of reaction class – see text

Code System Organ Class Name Terms* Occurrence †

0100 Skin and appendages disorders 101 57269

0200 Musculo-skeletal system disorders 55 8881

0300 Collagen disorders 21 827

0400 Nervous system and special senses 276 79149

0500 Psychiatric disorders 57 24406

0600 Gastro-intestinal system disorders 144 41093

0700 Liver and biliary system disorders 54 11026

0800 Metabolic and nutritional disorders 84 11631

0900 Endocrine disorders 48 2352

1000 Cardiovascular system 164 27488

1100 Respiratory system disorders 66 14658

1200 Haemic and lymphatic systems 192 18703

1300 Urinary system disorders 56 8893

1400 Reproductive system 121 3998

1500 Foetal disorders 89 893

1600 Neonatal and infancy disorders 63 202

1700 Neoplasm 70 397

1800 Body as a whole 194 59273

2 Statement of the problem

We formulate the problem P1. It has become clear that the approach we are using to analyze
ADRs bears a resemblance to the approach of others to the problem of text categorization.
For a review of some of the issues in text categorization see [35].

Let X denote the set of all patients and D denote the set of all drugs used by these patients.
Let c be a finite number of possible reactions (classes). Given patient x ∈ X we denote by
D(x) the set of drugs taken by this patient. In ADRAC data the number of drugs reported
for a patient is restricted to 10. We also denote by Y(x) = (Y1,Y2, . . . ,Yc) an c-dimensional
vector of reactions observed for the patient x; where Yi = 1 if the reaction i has occurred, and
Yi = 0 if it has not.

The goal of the study of drug-reaction relationships is to find a function h : D → Rc
+,

where given drug d ∈ D the components hi of the vector h(d) = (h1, h2, . . . , hc) associate the
weights (“probabilities”) of the occurrence of the reactions i = 1, 2, . . . , c.

Here Rc
+ is the set of all c-dimensional vectors with non-negative coordinates.

In the next step, given a set of drugs ∆ ⊂ D, we need to define a vector H = (H1, H2, . . . , Hc),
where the component Hi indicates the probability of occurrence of the reaction i after taking
the drugs ∆. In other words, we need to define a function H : S(D) → Rc

+, where S(D) is the
set of all subsets of D. The function H can be defined in different ways and it is an interesting
problem in terms of ADR(s). We will briefly discuss this problem below.
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5

Given patient x ∈ X and a set of drugs D(x), we will use the notation H(x) = H(D(x)).
Therefore, we will denote a classifier as the couple (h, H). To evaluate the performance

of different classifiers we need to measure the closeness of the two vectors H(x) and Y(x).
In this work we will use different evaluation measures presented in the Section on Evaluation
Measures.

In this statement, the problem P1 is a multi-class, multi-label text categorization problem,
but there are some interesting points that should be mentioned in relation to P1. One of the
main characteristics of ADRs is that the number of drugs (that is, words in the context of text
categorization) for each patient is restricted to 10 in the ADRAC data, and for majority of
patients just one drug was used. This complicates learning and classification, but on the other
hand, this allows us to introduce simple and fast algorithms.

It also should be noted that, at this stage of our investigation, the classification of reactions
is not the major aim. Here we aim to establish drug-reaction relations h(d) such that rep-
resentations H(x), x ∈ X , are close to Y(x). This makes the problem P1 more than just
a classification problem. Thus, we mainly concentrate on drug-reaction relations. Some other
characteristics of the problem P1 which are of interest in terms of ADRs will be discussed
below.

2.1 Potential Reactions

The vectors h(d) show what kind of reactions are caused by the drugs d ∈ D(x). Therefore the
vector H(x) can be considered as potential reactions which could occur with patient x. But
what kind of reactions will occur? This will depend upon the individual characteristics of the
patient as well as external factors [6]. Different patients can have different predispositions for
different reactions. Some reactions which have potentially high degrees may not be observed
because of the strong resistance of the patient to developing these reactions. But the existence
of these potential reactions could have an influence on the patient somehow. The results
obtained in [19] show that the information about the existence of potential reactions (but
which were not reported to ADRAC) helps to make prediction of reaction outcomes (bad and
good) more precise.

The function H can be defined in different ways. The study of more sensible definitions of
the function H is an interesting problem for future investigations. This problem is also related
to the study of Interaction of Drugs [19]. In the calculation below we will use the following linear
function H, which provided more accurate classification in [19]: H = (H1, . . . , Hc); where
for each subset ∆ ⊂ D the components Hi are defined as follows: Hi =

∑

d∈∆ hi(d), i =
1, . . . , c. In this case, for each patient x ∈ X , we have H(x) = (H1(x), . . . , Hc(x)), where

Hi(x) =
∑

d∈D(x)

hi(d), i = 1, . . . , c. (2.1)

The use of this function means that, we accumulate the effects from different drugs. For
example, if hi(dn) = 0.2 (n=1,2) for some reaction i, then there exists a potential of 0.4 for
this reaction; that is, the two small effects (i.e. 0.2) become a greater effect (i.e. 0.4). This
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method seems a more natural one, because physically both drugs are taken by the patient, and
the outcome could even be worse if there were drug-drug interaction(s).

The other important issue that is related to the definition of H, is the time factor; that
is, the time when the administration of each drug d ∈ D(x) ceases and the decay function of
the drug. In a simple case we can describe this decay by the function exp (td − t), where
t ≥ td and td is the time of cessation of drug d. Then we can use the following formula for the
definition of H :

Hi(x) =
∑

d∈D(x)

f(td − t∗)hi(d), i = 1, . . . , c; (2.2)

where t∗ is the time of onset of reaction(s) and f(td − t) = exp (td − t) if t ≥ td, and
f(td − t) = 0 if t < td. The application of the formula (2.2) is a very interesting problem for
future investigations which also needs to take into account many other factors such as the
metabolism and elimination of drugs. Drug exposure time is another important factor to take
into consideration [6].

3 Evaluation measures

To evaluate the accuracy of established drug-reaction relations by a given classifier (h, H),
we will use different measures.

3.1 Average Distance

This measure evaluates the closeness of the two vectors H(x) (predicted reactions) and
Y(x) (observed reactions). In this case, we define a distance dist(H(x),Y(x)) between these
vectors. The better classifier should provide the minimal sum of all distances. Therefore, we
are looking for a classifier (h, H) which minimizes the total sum of distances.

A common evaluation measure used in multi-label problems is the Hamming distance. But
it is not reasonable to use this distance here, because we deal with real valued weights H(x).

In this paper we will examine the following distance functions:

distp (H(x),Y(x)) =
c

∑

i=1

(‖Y(x)‖)−p (H̄i − Yi)
2, p = 0, 1, 2; (3.3)

where H(x) = (H1(x), . . . , Hc(x)), Y(x) = (Y1(x), . . . ,Yc(x)), ‖Y(x)‖ =
∑

j=1,...,c Yj(x) is
the number of reactions for the patient x, and the sign “bar” indicates a normalization:

H̄i(x) =
‖Y(x)‖

∑

j=1,...,c Hj(x)
Hi(x).
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The role of number p can be explained as follows. Clearly

distp (H(x),Y(x)) =
c

∑

i=1

(

(‖Y(x)‖)−
p

2 H̄i(x) − ‖Y(x)‖)−
p

2 Yi(x)
)2

,

and therefore, potential reactions are normalized such that the sum of these normalized po-
tential reactions can be represented as

c
∑

i=1

(‖Y(x)‖)−
p

2 H̄i(x) = (‖Y(x)‖)1−
p

2 .

In the distance dist0 this sum is equal to the number of reactions ‖Y(x)‖. In dist2 we
get the corresponding sum is equal to 1. dist1 can be considered as a middle version where
this sum is

√

‖Y(x)‖, and 1 ≤
√

‖Y(x)‖ ≤ ‖Y(x)‖.
It would be interesting to consider the Euclidian distance. But some preliminary analysis

showed that this distance does not provide us a reasonable evaluation.
Therefore, we will examine only the measures 3.3. Given a classifier (h, H), the average

distance error will be calculated as

Ep
av =

1

|X |

∑

x∈X

distp (H(x),Y(x)) (3.4)

Here |X | stands for the cardinality of the set X .
Now we formulate the problem P1 as the following optimization problem:

Ep
av → min; (3.5)

subject to : hi(d) ≥ 0, i = 1, ..., c, d ∈ D. (3.6)

In this paper we will describe an algorithm which aims to minimize the average distance error
Ep

av. This aim changes by taking different numbers p = 0, 1, 2. A discussion of the most
reasonable choice of distance measures is one of the main goals of this paper.

3.2 Other evaluation measures

We will also consider the following measures used in [27].

1. One-error. This measure evaluates how many times the reaction, (say i) having
the maximal weight in the vector H(x), has not occurred (that is, Yi(x) = 0). In the case

simeon
Australiasian  Data Mining Workshop  ADM03

simeon
149

simeon





8

where there is more than one reaction, having the same maximal weight in H(x), we need
to precisely define this measure.

Denote H∗(x) = {i ∈ {1, . . . , c} : Hi(x) = max{H1(x), . . . , Hc(x)}}, and Y ∗(x) = {i ∈
{1, . . . , c} : i ∈ H∗(x) and Yi(x) = 1}. Then we define the one-error as

Eone−error =
1

|X |

∑

x∈X

(

1 −
|Y ∗(x)|

|H∗(x)|

)

.

The meaning of this measure can be clarified using a simple example. Assume that there
are two reactions having the maximal weight. If both of them have occurred then the error is
zero, if just one of them has occurred then error is 0.5, if none have occurred then the error is 1.

2. Coverage. This measure evaluates the performance of a classifier for all the reactions
that have been observed.

Given x ∈ X , we denote by T (x) the set of all ordered reactions τ = {i1, . . . , ic} =
{1, . . . , c} satisfying Hi1(x) ≥ . . . ≥ Hic(x). Then according to a reaction vector (Y1(x), . . . ,Yc(x)),
we define the rank and the error as:

rankτ (x) = max{n : Yin(x) = 1, n = 1, . . . , c}; errorτ (x) =
rankτ (x)

‖Y(x)‖
− 1.

Obviously, the number rankτ (x) and errorτ (x) depend on the order τ. One way to avoid
the dependence on ordering is to take the middle value of maximal and minimal ranks. In this
paper we will use this approach. We define the rank as

rank (x) =
1

2
(rankmax (x) + rankmin (x));

where
rankmax (x) = max

τ∈T (x)
rankτ (x), and rankmin (x) = min

τ∈T (x)
rankτ (x).

The numbers rankmax (x) and rankmin (x) associated to the “worst” and “best” ordering,
respectively.

To define the average error - coverage, we will use the formula:

Ecov =
1

|X |

∑

x∈X

(

rank (x)

‖Y(x)‖
− 1

)

.
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Note that, Ecov = 0 if a classifier makes a prediction such that for all x ∈ X the observed
reactions are placed at the top of the ordering list of weights Hi(x).

3. Average Precision.

One-error and coverage do not completely describe multi-label classification problems. In
[27] the average precision was used to achieve evaluation more completely. We also will use
this measure. Similar to the average error, the average precision depends on a given order
τ = {τ1, . . . , τc} ∈ T (x). So we define the average precision as a middle value of average
precisions obtained by the “worst” and “best” ordering.

Let Y (x) = {l ∈ {1, . . . , c} : Yl(x) = 1} be a set of reactions that have been observed for
the patient x. Given order τ = {τ1, . . . , τc} ∈ T (x), (that is, Hτ1(x) ≥ . . . ≥ Hτc(x) ), we
define the rank for each reaction l ∈ Y (x) as rankτ (x; l) = k, where τk = l. Then, Average
Precision will be defined as:

Pav =
1

|X |

∑

x∈X

1

2|Y (x)|
(Pworst(x) + Pbest(x)) ;

where

Pworst(x) = min
τ∈T (x)

∑

l∈Y (x)

|{k ∈ Y (x) : rankτ (x; k) ≤ rankτ (x; l)}|

rankτ (x; l)
;

Pbest(x) = max
τ∈T (x)

∑

l∈Y (x)

|{k ∈ Y (x) : rankτ (x; k) ≤ rankτ (x; l)}|

rankτ (x; l)
.

4 A solution to the optimization

problem (3.5),(3.6)

The function in (3.4) is non-convex and non-linear, and therefore may have many local min-
imum points. We need to find the global optimum point. The number of variables is |D| · c.
For the data Mallreac, that we will consider, |D| = 5057 and c = 18. Thus we have a global
optimization problem with 91026 variables, which is very hard to handle using existing global
optimization methods. Note that, we also tried to use local minimization methods which were
unsuccessful. This means that there is a clear need to develop new optimization algorithms
for solving problem (3.5),(3.6), taking into account some peculiarities of the problem.

In this paper we suggest one heuristic method for finding a “good” solution to the problem
(3.5),(3.6). This method is based on the proposition given below.
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We denote by S the unit simplex in Rc; that is,

S = {h = (h1, . . . , hc) : hi ≥ 0, h1 + . . . hc = 1}.

In this case for each h(d) ∈ S the component hi(d) indicates simply the probability of the
occurrence of the reaction i.

Given drug d we denote by X(d) the set of all records in X , which used just one drug
– d. Simply, the set X(d) combines all records where the drug d was used alone.

Consider the problem:

∑

x∈X(d)

c
∑

j=1

‖Y(x)‖−p · (Yj(x) − ‖Y(x)‖hj(d))2 → min, (4.7)

h(d) = (h1(d), . . . , hc(d)) ∈ S. (4.8)

Proposition 4.1 A point h∗(d) = (h∗
1(d), . . . , h∗

c(d)), where

h∗
j (d) =





∑

x∈X(d)

‖Y(x)‖2−p





−1

·
∑

x∈X(d)

‖Y(x)‖1−p Yj(x), j = 1, . . . , c, (4.9)

is the global minimum point for the problem (4.7),(4.8).

Now, given drug d, we consider the set Xall(d) which combines all records that used the
drug d. Clearly X(d) ⊂ Xall(d). The involvement of other drugs makes it impossible to solve
the corresponding optimization problem similar to (4.7), (4.8). In this case, we will use the
following heuristic approach to find a “good” solution.

We denote by Ndrug(x) the number of drugs taken by the patient x. Then, we set:

h∗∗
j (d) =





∑

x∈Xall(d)

‖Y(x)‖2−p





−1

·
∑

x∈Xall(d)

‖Y(x)‖1−p Yj(x)

Ndrug(x)
, j = 1, . . . , c. (4.10)

This formula has the following meaning. If Ndrug(x) = 1 for all x ∈ Xall(d), then (4.10)
provides global minimum solution. Let Ndrug(x) > 1 for some record x ∈ Xall(d). In this
case, we assume that all drugs are responsible to the same degree; so we associate only the
part 1/Ndrug(x) of the reactions Yj(x) to this drug.
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4.1 The calculation of weights for each drug

For each drug d we define the sets X(d) – the set of all cases where drug d was used alone and
Xall(d) – the set of all cases where drug d was used. The set X(d) carries very important infor-
mation, because here the drug d and reactions are observed in a pure relationship. Therefore,
if the set X(d) contains a “sufficiently large” number of records, then it will be reasonable to
define the weights hj(d), (j = 1, . . . , c) by this set.

We consider two numbers: |X(d)| – the number of cases where the drug is used alone,
and P (d) = 100|X(d)|/|Xall(d)| – the percentage of these cases. To determine whether the set
X(d) contains enough records we need to use the both numbers. We will consider a function
φ(d) = a|X(d)| + bP (d) to describe how large the set X(d) is.

Therefore, we define h(d) = (h1(d), . . . hc(d)) as follows:

h(d) =

{

h∗(d) if φ(d) ≥ φ∗;
h∗∗(d) otherwise;

(4.11)

where h∗(d) and h∗∗(d) are defined by (4.9) and (4.10), respectively.

Remark 4.1 We note that the weight hi(d) is not exactly a probability of the occurrence of
the reaction i; that is, the sum

∑c
i=1 hi(d) does not need to be equal to 1.

Remark 4.2 We have the situation where, for some new (test) examples, new drugs were
involved. For each such new drug d we set hi(d) = 0, i = 1, . . . , c.

5 The algorithms

For our analysis we use two algorithms. The first algorithm A(p) which is introduced in
this paper is described below. The second algorithm that we use is BoosTexter (version Ad-
aBoost.MH with real-valued predictions, [27]) which has a high performance in text catego-
rization problems and seems to be suitable for representing drug-reaction associations.

These two algorithms produce the weighted vector H(x) for each patient x which makes
it suitable for the applying distance evaluation measures. But the methods of calculating the
vectors H(x) are quite different: the algorithm A(p) uses only drugs that have been taken
by the patient x, in contrast, BoosTexter uses all drugs in the list of attributes defined (that
is, even drugs that have not been taken by patient x, are used for the calculation of the vector
H(x)). Our hope is that, we can make more accurate conclusions by applying both quite
different methods.

The algorithm A(p) determines a classifier (h, H), where the weights h(d), d ∈ D, are
defined by (4.11), and the function H(x) is defined by (2.1). We will consider three versions:
A(0), A(1), A(2), corresponding to the distance functions distp, p = 0, 1, 2, respectively. Each
of these algorithms tends to minimize the average distance calculated by its own measure.
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The second algorithm BoosTexter [27] produces predictions in the form H(x) = (H1(x), . . . ,Hc(x)),
where the numbers Hi(x) are real values which can be positive or negative. In other words,
this algorithm defines potential reactions that we are interested in.

To apply the distance measures described above, we need to make all weights calculated
by BoosTexter non-negative. Let Hmin(x) = mini=1,...,c Hi(x). Then we set H(x) = H(x), if
Hmin(x) ≥ 0; and

H(x) = (H1(x) −Hmin(x), . . . ,Hc(x) −Hmin(x), if Hmin(x) < 0.

Therefore, we will apply two quite different algorithms – A(p) and BoosTexter. It would be
interesting to compare the drug-reaction relations (that is, h(d)), produced by these algorithms.
For this aim we consider one example.

Example 5.1 Assume that, the drug d, which was used alone in 4 cases: in one case the
first and second reactions and in the all other cases just the first reaction have been observed.
We have the following representations h(d). The results for BoosTexter are normalized.

A(0): h(d) = (0.714, 0.286, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
A(1): h(d) = (0.800, 0.200, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
A(2): h(d) = (0.875, 0.125, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
BoosTexter (round=500): h(d) = (0.673, 0.327, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
BoosTexter (round=2000): h(d) = (0.675, 0.325, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).
In this example the first reaction occurred 4 times and the second once. We see that,

BoosTexter produces weights such that the weight for the first reaction is just 2 times greater
than for the second reaction, whereas, this difference is greatest for algorithm A(2). The
interesting question is: which drug-reaction representation is “better” – one which offers a big
difference in weights or one which offers a slight difference in weights in spite of big differences
in distribution.

For this purpose we use different evaluation measures. Note that, in terms of One-error,
Coverage and Average Precision all the representations in Example 5.1 work similarly; that is,
the rank for the first reaction is 1 and for the second is 2. The effect of different drug-reaction
representations can be observed considering the cases where more than one drug was used.

New events

One of the main difficulties that arises in the study of drug-reaction relationships is the
low level of repeating cases (events) in spite of the large number of records. We consider
eighteen groups of reactions (out of 1224 reactions) in order to have a sufficient number of
repeating cases. However, in the dataset Mallreac this problem still exists (for the drugs).
One way to avoid this problem is to combine similar drugs as one meta-drug (as it has been
done for reactions), but to achieve this requires a more complete classification of drugs by
ADRAC, which has partially implemented the Nordic anatomical therapeutic chemical (ATC)
classification [23].

We define a new event as a case where, for some test example, all drugs used are not
presented in the training set; in other words, all drugs have been taken by this patient are
“new”. This situation relates to the fact that, new drugs are constantly appearing on the
market. Obviously, to make prediction for such examples does not make sense. Therefore, in
the calculations below, we will remove all new events from test sets.
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6 The results of numerical experiments

In the calculations below we take as a test set records sequentially from each year, starting
from 1996 until 2001. For example, if records from 1999 are taken as a test set, then all records
from years 1972–1998 form a training set. In the Table 2 we summarized the number of records
in test and training sets, and, also, the number of new events removed.

Table 2: The Training and Test Sets *“Removed” means how many records were removed
from test set.

Year Number of Records

Training Test Removed*

1996 79660 7734 410

1997 87804 8090 715

1998 96609 9361 774

1999 106744 11216 840

2000 118880 11244 671

2001 130795 6186 191

First we made calculations by the algorithm BoosTexter. We ran this algorithm choosing
different numbers of training rounds. The results obtained for 6000 rounds are presented in
Tables 3 and 4. In Table 4 we present the results obtained for One-error, Coverage and Average
Precision.

Next we applied the algorithms A(0), A(1) and A(2), corresponding to the distance func-
tions distp, p = 0, 1, 2, respectively. We used a function φ(d) = |X(d)| + P (d) to describe
the informativeness of the set X(d). We also need to set a number φ∗. The calculations show
that the results are not essentially changed for different values of φ∗ in the region φ∗ ≥ 50. We
set a large number φ∗ = 1000 in the calculations which means that for the majority of drugs
weights are caculated by formula (4.10). The results are presented in Tables 5 and 6.

In Table 3 we present the results for the average distance errors comparing algorithm
A(p) to BoosTexter for average error. On the basis of this measure algorithm A(p) performs
consitently better than BoosTexter. This means that the formulae (4.11) for definition of
weights h(d) provides a “good” approximation for the minimal solution to the Problem (3.5),
(3.6).

The results for the other measures (one-error, coverage and average precision) for Boos-
Texter are given in Table 4, and for A(p) in Tables 5 and 6. It can be seen that, for all
drugs, comparing Tables 4 and 5, the performance of A(p) and BoosTexter are very similar.
When the suspected drugs are compared (Tables 4 and 6), algorithm A(1) performs better
than BoosTexter. The comparison of results obtained for other evaluation measures (Tables
5 and 6) reveals differences in the performance of these three versions. We observe that by
One-error measure A(1) performs better than the others, by Coverage A(2) performs better
and by Average Precision both A(1) and A(2) perform better. In all cases A(0) has a worse
performance. Therefore, we can conclude that, the definition of distance measure, taking p =1
or 2, is preferable than p=0.
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Table 3: The Results Obtained by A(0), A(1), A(2) and BoosTexter for Average Error
for Distance Measure p = 1 The algorithm BoosTexter2 1 [27] was set to run for 6000
training rounds. ‘all drugs” means that the drug-reaction weights are calculated assuming
all drug(s), suspected “sus. drugs” means that we use only suspected drug(s) reported in
ADRAC data

Year Drugs A(0) A(1) A(2) BoosTexter

Training Test Training Test Training Test Training Test

1996 all drugs 0.695 0.740 0.678 0.731 0.693 0.751 0.817 0.820

sus. drugs 0.679 0.740 0.661 0.732 0.681 0.759 0.816 0.820

1997 all drugs 0.696 0.740 0.679 0.734 0.694 0.755 0.817 0.824

sus. drugs 0.680 0.743 0.663 0.737 0.683 0.762 0.817 0.825

1998 all drugs 0.697 0.737 0.680 0.731 0.694 0.751 0.818 0.818

sus. drugs 0.681 0.748 0.664 0.742 0.684 0.767 0.817 0.818

1999 all drugs 0.697 0.726 0.680 0.722 0.694 0.751 0.817 0.820

sus. drugs 0.681 0.722 0.665 0.718 0.683 0.749 0.816 0.820

2000 all drugs 0.696 0.756 0.680 0.752 0.693 0.783 0.817 0.815

sus. drugs 0.681 0.755 0.665 0.753 0.683 0.787 0.817 0.815

2001 all drugs 0.697 0.749 0.682 0.747 0.695 0.781 0.817 0.809

sus. drugs 0.684 0.749 0.668 0.748 0.687 0.787 0.817 0.809

As we have shown in Example 5.1, the algorithm A(2), in comparison with A(1), gen-
erates drug-reaction representations with greater differences in weights. The results presented
in Table 5, for One-error and Coverage, obtained by the algorithms A(1) and A(2), allow
us to make very interesting conclusions:

– if we are interested in One-error (that is, simply saying, the probability of occurrence of
the reaction which has the greatest weight) then it is better to use drug-reaction representations
with small differences in weights;

– if we are interested in Coverage then it is better to use drug-reaction representations
with big differences in weights. We note that, in all cases, the results are improved if only
suspected drugs are used.

Below we will only concentrate on the results obtained by A(1) and BoosTexter.
The comparison of the training errors in Tables 3, 4, 5 and 6 shows that A(1) performs

generally better than BoosTexter. We can decrease training errors for BoosTexter by increas-
ing the number of training rounds (results not presented), but in this case test errors increase.
This should be expected, because the algorithm BoosTexter is not designed to minimize some
distance measures, instead it tends to achieve good performance for the other evaluation mea-
sures.

There are two important points that make using the algorithm A(1) preferable for the
study drug-reaction associations.

1. BoosTexter does not calculate weights for each drug. For example, until the year 2000,
where 5057 drugs were used. BoosTexter running for 6000 rounds defines weights only for 4521
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Table 4: The Results Obtained by BoosTexter for One-Error, Coverage and Average
Precision The algorithm BoosTexter2 1 [27] was set to run for 6000 training rounds
*Average Precision is presented in percent

Year Drugs Eone−error Ecov Pav∗

Training Test Training Test Training Test

1996 all drugs 0.463 0.533 1.580 2.134 63.93 57.06

sus. drugs 0.485 0.533 1.686 2.208 62.50 55.87

1997 all drugs 0.466 0.541 1.601 2.185 63.67 56.76

sus. drugs 0.486 0.560 1.708 2.243 62.27 55.64

1998 all drugs 0.469 0.539 1.630 2.147 63.29 56.84

sus. drugs 0.489 0.558 1.730 2.197 62.00 56.25

1999 all drugs 0.471 0.507 1.651 2.038 63.07 59.26

sus. drugs 0.490 0.503 1.747 2.015 61.86 59.72

2000 all drugs 0.471 0.553 1.665 2.059 62.98 56.94

sus. drugs 0.488 0.549 1.747 2.036 61.95 57.35

2001 all drugs 0.475 0.557 1.683 2.112 62.69 55.70

sus. drugs 0.490 0.565 1.754 2.117 61.79 55.37

drugs to this year. In contrast, A(1) calculates weights for each drug encountered, which is
very important (in this case we establish drug-reaction relations for all drugs).

2. The algorithm BoosTexter classifies examples so that drugs that are not used are still
assigned weights to the function H(x). In the other words, reactions are predicted not only by
drugs actually used, but also, drugs which were not taken.

In spite of these two points, the application of the algorithm BoosTexter is useful, because
this algorithm, based on quite different method, provides us very important information about
the possible accuracy of the prediction that could be achieved.

One more important fact should also be noted. In all cases above the results obtained are
much better than the default values (we define default values assuming that for each record
all reactions can occur with the same weight). This emphasizes that it possible to study
drug-reaction relations, not involving other information about patients. The drug-reaction re-
lationships could then be used, together with the patient information, to enhance the prediction
of reactions that may occur.
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Table 5: The Results Obtained by A(0), A(1) and A(2) for Different Evaluation Measures
– using all drugs *Average Precision is presented in percent

Year Algorithms Eone−error Ecov Pav*

Train Test Train Test Train Test

1996 A(0) 0.494 0.538 1.930 2.304 60.03 55.70

A(1) 0.471 0.526 1.655 2.112 63.10 57.72

A(2) 0.497 0.538 1.512 2.013 63.46 58.30

1997 A(0) 0.496 0.542 1.949 2.355 59.73 55.41

A(1) 0.473 0.534 1.676 2.193 62.88 57.22

A(2) 0.498 0.551 1.532 2.102 63.26 57.24

1998 A(0) 0.497 0.536 1.971 2.288 59.54 56.45

A(1) 0.475 0.525 1.701 2.146 62.60 57.81

A(2) 0.501 0.562 1.556 2.068 62.99 56.96

1999 A(0) 0.497 0.515 1.980 2.185 59.52 58.42

A(1) 0.474 0.504 1.720 2.043 62.49 59.81

A(2) 0.501 0.532 1.578 1.979 62.84 59.28

2000 A(0) 0.498 0.568 1.982 2.365 59.45 53.74

A(1) 0.474 0.559 1.724 2.180 62.47 55.49

A(2) 0.499 0.575 1.584 2.061 62.87 56.67

2001 A(0) 0.502 0.563 1.998 2.288 59.15 54.04

A(1) 0.478 0.550 1.735 2.125 62.22 56.11

A(2) 0.502 0.571 1.595 2.043 62.64 56.68

7 Conclusion

In this paper we have studied drug-reaction relations using the system organ class grouping of
reactions from ADRAC data. These relations are presented in the form of a vector of weights.
To determine these vectors we applied two algorithms based on quite different methods. The
results show the possibility of studying drug-reaction relations, not involving other information
about patients. In all cases above the results obtained are much better than the default values.
For instance, the results for test sets (that is, for new patients) in terms of One-error were
around 0.270 which should be considered sufficiently low error rate. This error rate means that
for 73 percent of new patients, the reaction having the greatest weight has occurred.

To develop new algorithms taking into account the peculiarities of ADRs is an important
problem. The development of these algorithms should help us to extract more useful infor-
mation from ADRAC data. In particular, the study of drug-reaction associations, drug-drug
interactions and the influence of other data fields contained in the ADRAC data are interesting
problems for future investigation.

simeon
Australiasian  Data Mining Workshop  ADM03

simeon
158

simeon





17

Table 6: The Results Obtained by A(0), A(1) and A(2) for Different Evaluation Measures
– using only suspected drugs *Average Precision is presented in percent

Year Algorithms Eone−error Ecov Pav*

Train Test Train Test Train Test

1996 A(0) 0.472 0.520 1.806 2.236 61.98 57.28

A(1) 0.453 0.510 1.547 2.057 64.76 59.14

A(2) 0.469 0.518 1.410 1.984 65.13 59.38

1997 A(0) 0.474 0.531 1.827 2.303 61.70 56.75

A(1) 0.454 0.519 1.566 2.156 64.56 58.29

A(2) 0.470 0.532 1.429 2.071 64.93 58.38

1998 A(0) 0.474 0.520 1.840 2.238 61.61 57.80

A(1) 0.456 0.516 1.586 2.106 64.33 58.86

A(2) 0.471 0.549 1.451 2.038 64.71 57.96

1999 A(0) 0.473 0.503 1.847 2.141 61.61 59.37

A(1) 0.456 0.492 1.599 2.010 64.26 60.66

A(2) 0.472 0.518 1.469 1.955 64.57 60.08

2000 A(0) 0.476 0.566 1.855 2.343 61.43 54.15

A(1) 0.456 0.558 1.611 2.135 64.16 56.38

A(2) 0.473 0.564 1.482 2.041 64.48 57.24

2001 A(0) 0.481 0.554 1.878 2.271 60.99 54.43

A(1) 0.462 0.542 1.631 2.090 63.80 56.91

A(2) 0.478 0.562 1.502 2.022 64.11 57.36
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Abstract. Predictive modelling tools combined with spatial data min-
ing techniques can be used to discover relationships among geographic
phenomena. Mining geographical data requires very flexible and simple
function classes for data fitting, highly efficient methods to be able to fit
a large number of models locally to vast amounts of data. The models
need to have structure which allows collections of models to be mined. It
appears that sparse grids do satisfy these requirements of geographical
data mining.
After a discussion of requirements of geographical data, mining sparse
grids will be reviewed and their suitability for mining geographical data
will be discussed. Some results are presented and some further ideas for
mining of large collections of local sparse grid models are discussed.

Keywords: Spatial analysis, geographic data mining, predictive modelling,
sparse grids

1 What do geographers want from data mining?

One can describe geography as being the study of where things are, where things
are not, and how these things interact with one another through space and time.
“Things” in this sense are any phenomena that have some spatial component,
and might be discrete objects or continuous surfaces (fields) [25]. Examples in-
clude individual trees and animals, or populations of such trees and animals.
Alternately, one might investigate spatial processes such as the flow of water
through a catchment and the associated flux of sediment, nutrients and pol-
lutants [30]. From this, one can see that geographers are interested in a wide
variety of problems from many different fields of research.

The sparse grids technique one means of analysing geographic phenomena,
and we describe its potential for geographic data mining in this paper.

1.1 The problems of geographic data

There is now an enormous amount of information collected that has spatial at-
tributes, including from remote sensing satellites, national censuses, mobile tele-
phone records, crime statistics, land use change in agriculture, health records,
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epidemiological data, and consumer purchasing records. The challenge for geog-
raphers is to make sense of these data to derive an understanding of the under-
lying spatial phenomena. The problem we face is that there is an overwhelming
volume of data.

As an example of the volume of data, the 2001 census of the Australian pop-
ulation has over 17,000 sample areas for the state of New South Wales at the
finest aggregate unit (census collection district). For each of these collection dis-
tricts there are thirty-three categories containing over 4000 attribute fields into
which the population is divided. Each person in the collection district at the
time of the census will fall into at least one field within each category, and some-
times more. When one extends the analysis to include temporal relationships
among the population over several censuses then the amount of data increases
considerably. This is despite each earlier census being of slightly lower detail.

As another example, consider the amount of data generated by remote sens-
ing satellites. A commonly used data source is the Landsat Enhanced Thematic
Mapper, which collects data in six visible and infra-red bands (30 m resolution),
one thermal band (with high and low spatial resolution versions (120 m and
60 m), and one panchromatic band (across visible and near infra-red spectra,
15 m resolution). The data are divided into scenes for distribution, with each
scene approximately 185 km along each side. This translates to approximately
6000 by 6000 cells for the visible and infra-red bands. This is normally a reason-
able data set to deal with. However, when one includes the temporal component
then, once again, the amount of data increases rapidly. The Landsat satellite
repeats its polar orbit cycle every sixteen days, so a location at the equator is
sampled every sixteen days, and more frequently near the poles due to spatial
overlap of the sample swaths. The result is that, if there is no cloud to obscure
the ground, one would have twenty-two scenes to analyse for each year of a study.
While this is very simple example, as many locations are obscured by cloud for
at least some portion of the scenes each year, there are other satellites carrying
radar sensors that are not affected by cloud, hyperspectral sensors which record
spectral response in tens to hundreds of bands, and sensors with very high spa-
tial resolutions (eg. 0.6 m). This is a major issue given that each of these sensors
provides complementary information and so they could all be used in a single
analysis.

A second consideration is spatial and temporal non-stationarity, which can
have serious effects on analysis results. This is related to Tobler’s First Law of
Geography “that everything is related to everything else; but that near things
are more related than those far apart” [29].

If a model is applied to a data set and is assumed to apply equally over the
entire study area, study period, or both, then one is assuming that the processes
are spatially and temporally stationary. This means that the landscape studied
is in some form of equilibrium between the phenomenon of interest (response
variable) and the phenomena it is being related to (correlate variables). This is
often not the case [18–20]. Spatial phenomena are often the result of a series of
superimposed processes, all operating at different spatial and temporal scales [3].
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Some of these processes may be in equilibrium with the phenomenon of interest,
but many may not be. The end result is that the response variable will have
a good relationship with some of the correlate variables, and little relationship
with others. If the analysis is conducted at a geographically local scale (by using
a geographically local sample) then many of these problems may be reduced
because the effects of non-stationarity will be less over smaller regions.

A third major problem that arises from these geographic data are that they
are all highly correlated, both through space and time. Any analysis applied to
the data must be able to operate in the presence of such correlation without
violating the assumptions of the method.

Finally, there are issues with the treatment of geographic and temporal
spaces. Geographic processes are often complex and non-Euclidean [19], meaning
that the treatment of the geographic relationships will impact on the validity of
the results of the mining exercise. In addition to this, time cannot be treated as
merely an extension of the spatial domain [27]. The nature of time is very dif-
ferent in that it is unidirectional in the flow of effects, whereas spatial processes
operate in three dimensions.

The above issues are just a sample of those that affect geographic analyses
(see [24] and [23]), and there is a clear need for data mining tools that can
approach geographical problems involving such complexity and sheer volumes of
data. Sparse grids provide one approach that may be able to cope with some of
these issues.

2 Predictive modelling with sparse grids

2.1 Sparse grid functions

The sparse grid idea was known for some time, it appears in the modern liter-
ature in [28] and sparse grids were applied to the solution of engineering prob-
lems by Zenger [31]. The first data mining applications of sparse grids appeared
in [16] and [9] and geographical applications were first considered in [21]. Sparse
grids can also be viewed as a special variant of multivariate regression splines
(MARS) [8]. The theory of sparse grids has been developed considerably, espe-
cially for the case of the classical sparse grids, starting with [31] and the “Munich
school”.

In the following we provide a short introduction into sparse grid functions
and contrast them with regular grid functions.

Sparse grid functions are multivariate real functions f(x1, . . . , xd). They com-
bine many features of linear models, regression trees [2], wavelets [4], MARS [8],
finite elements [1], additive models [13], and splines [5].

In the univariate case, d = 1 the sparse grids are piecewise linear functions [5],
defined on a regular grid, i.e. a grid with equidistant grid points. The number of
gridpoints is nk where n0 = 1 corresponds to constant functions, n1 = 1 to linear
functions. For k > 1 one has nk = 2k−1 + 1. Piecewise linear functions provide
a good compromise between computational efficiency and continuity and form
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the basis for MARS [8, 13, 5]. Adaptivity is obtained through the choice of the
level parameter k.

In the case of of bivariate functions, d = 2 regular grids define piecewise
bilinear functions. In each cell defined by four grid lines the functions are bilinear,
i.e., have the form a0+a1x1+a2x2+a3x1x2. Such function spaces are commonly
used in finite element analysis, for example, in finite element fitting and for the
approximation of smoothing splines [26]. The number of grid points is now the
product nk1

nk2
of the numbers of gridpoints in each dimension. The simplest

spaces of functions defined in this way contain the constant functions with one
grid point, the functions which are linear in one variable with two grid points,
and the bilinear functions with 4 grid points.

These are the simplest four spaces defined by two-dimensional regular grids.
Note that in particular the space of linear functions, while a subspace of bilinear
functions, does not correspond to a regular grid. As the functions are represented
by the values at the grid points it is not totally obvious unless one computes
a difference of the type y1 − y2 − y3 + y4 of the values of the four grid points
if the bilinear function is actually linear or not. This is a slight computational
disadvantage for data mining if one would like to generate many models and
extract the linear ones.

This situation is even worse in the case of more than 2 variables. The sim-
plest regular grid which involves all d variables has 2d grid points and defines a
multilinear function which is defined by the values in the grid points and thus
requires 2d coefficients for their representation. Linear functions, which can be
represented with d+1 parameters, are thus not economically described by regu-
lar grid functions which use 2d parameters. Moreover, the determination of the
linearity of a multilinear function is much more complicated than in the previous
case. Note that the simplest function defined by a regular grid and involving all
d variables is multilinear and needs 2d coefficients. This is an aspect of the curse
of dimensionality. Regular grid function approximations are thus not suitable for
most data mining applications.

Sparse grid functions address these shortcomings. The grids are unions of
regular (and typically small) grids and a sparse grid function is the sum of
the corresponding regular grid functions. For example, a sparse grid function
f(x1, . . . , xd) could have the form

f(x1, . . . , xd) = f1(x1) + f2(x4) + f3(x2, x4, x5) + f4(x2, x4, x5) + · · ·

where each component fi is defined by a regular grid. Note that the same vari-
ables, e.g., x2, x4, x5, can occur in different components which relate to different
grid sizes, e.g., a grid with 5 × 5 × 3 grid points and a grid with 2 × 3 × 9 grid
points. Note that there is some redundancy in this representation, for example
one could add a constant to any component and subtract it from any other
without changing the function.

Any regular grid is also a sparse grid. For example, the space of constant
functions is a sparse grid function space. More generally, if one takes the union of
the linear functions in one variable (all of which are regular grids) one obtains the
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space of linear functions which is thus a sparse grid space. For the representation
one requires two coefficients for each component function and so, in the case of d

variables, one requires 2d coefficients for the representation of linear functions as
a sparse grid as the constant part is represented redundantly in each component.
While slightly redundant, this compares very favourably with the case where
one represents a linear function by a regular grid, i.e., as a multilinear function
with 2d coefficients. With sparse grids one can now directly search for linear
functions and in collections of large numbers of models recognise a linear function
immediately. More generally, if one considers the union of regular grids with
functions which only depend on one variable one obtains additive functions.
Like in the case of the linear functions one avoids the curse of dimensionality
(the exponential dependence of the number of coefficients) and has the same
small redundancy as the constants are represented in all components. If one
now considers the union of regular grids where the functions only depend on 2
variables, i.e., where the grids are planar, one obtains a sparse grid which include
interactions between variables. Higher order interactions can also be obtained
when one uses regular grid functions which depend on more than 2 variables. A
simple example of a construction of a sparse grid from a couple of regular grids
is given in figure 1.

= + +

Fig. 1. Construction of a sparse grid from regular components

Sparse grids provide an efficient tool to investigate multiscale effects in addi-
tion to the interaction effects discussed previously. In the case of one dimension
the width of the grid cells defines the scale. Very fine grids allow the representa-
tion of highly oscillating functions and coarser grids are used for more smooth
variations. In higher dimensions one may have different scales for the different
variables. Moreover, the scales of the interactions, in particular, high-order in-
teractions are typically lower than the ones for additive components as they
introduce a higher degree of singularity. For a grid with one variable and nk

grid points one defines the level or scale as k. This can be generalised for two
dimensions where the grid with nk by nj grid points has now an overall level of
k + j. The so defined level is approximately the logarithm of the total number
of grid points and thus a reasonable complexity measure. It is used to define the
“classical” sparse grids [31] which contain components which all have the same
level. It was demonstrated that these classical sparse grids have very similar
approximation performance as the regular grid which contains the sparse grid.
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The classical sparse grids are computationally feasible up to around ten di-
mensions. This is substantially higher than the regular grids which are pre-
dominantly used in two and three dimensions and are maybe feasible for four
dimensions. In data mining applications, however, one does encounter regularly
between 10 and 100 variables and in many applications in bioinformatics, bank-
ing, spectroscopy and others thousands of variables are common. Sparse grids
are able to represent functions with close to arbitrary numbers of variables.

2.2 Why sparse grids are suitable for mining geographical data

While sparse grid functions have not been widely used so far in geographical data
analysis, it appears that they provide an efficient tool for predictive modelling-
based data mining and, in particular, compare favourably with other methods
used like artificial neural nets and regression networks.

1. Sparse grids define a collection of function spaces which include the space of
linear functions, spaces of additive models, ANOVA decomposition spaces
and multilevel decomposition spaces. A function space selection procedure is
an important part of the sparse grid mining routines and the type of space
fitted provides valuable information about the data.

2. Sparse grids are flexible enough to approximate arbitrary functions. In par-
ticular, sparse grid functions provide good approximations of functions from
reproducing kernel Hilbert spaces, radial basis functions or regularisation
networks. There is some literature on sparse grid approximation properties
but no systematic review, see, e.g., http://bibliothek.iam.uni-bonn.de/
duennbib.html for some earlier references.

3. Sparse grids are additive and sparse grid fitting amounts to solving a pe-
nalised least squares problem. The regularisation parameter can be chosen
using crossvaliation or test data sets, see [13]

4. There are powerful computational techniques akin to backfitting and using
preconditioned conjugate gradient methods which reduce the solution of the
sparse grid fitting problem to the iterated solution of multiple regular grid fit-
ting problems for which efficient iterative and direct solvers are available [11,
17].

5. Sparse grid functions can be readily compared in terms of their component
spaces and the actual functions and thus lend themselves to mining the
collection of models obtained (see last section).

6. Sparse grid functions are similar to ANOVA decompositions and have the
same interpretative power in terms of additive effects and interactions. This
feature is shared with methods like MARS [8], additive models [14] and
ANOVA splines [22].

7. Sparse grids allow the identification of linear trends, curvatures, and higher
order fluctuations and permit multiresolution analysis.

8. Sparse grid fitting and evaluation can be done efficiently using parallel and
high performance computers and exhibit both coarse and fine grain paral-
lelism. Sparse grid algorithms use finite element technology developed for
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engineering problems and tested in many applications and commercial pack-
ages. The algorithms scale linearly in the data size and allow scalable paral-
lel execution over the data records. Consequently, the sparse grid algorithms
have the capacity required to analyse very large data sets and fit complex
models [10, 16, 17].

9. Open source software is available, see http://datamining.anu.edu.au.
10. The sparse grid model can be interpreted as a linear model using features

which are defined by the regular grid basis functions. Thus any methods
based on linear models can be applied. In particular, one may take into
account the autocorrelation postulated in Tobler’s law using sparse grid au-

toregressive models which are models of the form

y(p) = f(x(p), y(pN ), y(pS), y(pE), y(pW ))

where p denotes the position of the prediction and pN etc etc are the positions
of neighbouring points. After such a model has been learnt the prediction at
any new point requires an iterative process which will predict the values in
a neighbourhood of points as well. The sparse grids are again just a flexible
generalisation of ordinary autoregressive models. Alternatively, sparse grids
allow the introduction of models using differential equations of the form

y(p) = f(x(p),∆py(p))

where ∆p is a differential operator in the position.

In summary, sparse grids provide a computationally efficient tool to model
functions of very many variables, fitting vast amounts of data, and they can
be used to extract and identify additive components, interactions and effects at
multiple scales. In geographical applications all these properties are seen to be
useful, one often has many variables, and would like to find components, and in
particular, compare various models. This is further expanded in the following.

2.3 Fitting sparse grids to data

Predictive modelling addresses the problem of learning from data, i.e. given
n data points x1, . . . , xn corresponding to n objects or observations which all
have labels or features y1, . . . , yn one would like to find a function f such that
yi ≈ f(xi) so that the function f can be used to predict the labels or features
for future observations. Typically this prediction will not be ideal as the model
will be limited and the data is usually not sufficient to explain every variation
of the labels or features. In order to identify a “best possible” function f one
introduces a loss function which depends on both the observed data and the
function and f is chosen as the minimum of the loss function. Much has been
written about this both in the statistical and machine learning literature and
shall not be discussed any further here. Instead the focus of this discussion is on
computational issues relating to sparse grid learning. For a good recent reference
on the topic of statistical learning in general, see [13].
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First consider learning a function from a given sparse grid function space by
a least squares fit such that f is determined as minimiser of the functional:

J(f) =
∑

i=1

(yi − f(xi))
2.

The sparse grid is represented as a sum of regular grid functions fj such that:

f(x) =

m
∑

j=1

fj(x).

If one expands the functions fj in terms of any basis functions a linear system
of equations for the coefficient vectors cj of the functions fj is obtained of the
form:







A11 A12 · · · A1m

...
...

...
Am1 Am2 · · · Amm













c1

...
cm






=







b1

...
bm






.

It turns out that this system of equations does pose two computational chal-
lenges. First, it can be seen that in most cases the off-diagonal blocks Aij (i 6= j)
are fairly dense and only the diagonal blocks are sparse and second the matrix
is typically large and singular. The singularity of the matrix can be addressed
by regularisation.

The size and density of the matrix is dealt with by a backfitting approach
where a sequence of approximations is constructed by

f (k) =

m
∑

j=1

f
(k)
j

and

f
(k+1)
j = argminfj

J(

j−1
∑

s=1

f (k+1)
s + fj +

m
∑

s=j+1

f (k)
s ).

In this way, at each step a sequence of regular grids have to be determined and
thus a collection of small sparse linear systems of equations are solved instead
of the one big dense system.

While this algorithm, and, in particular, an acceleration using conjugate gra-
dients, converges reasonably quickly, the small sparse linear systems cannot be
solved concurrently. However, there is an alternative algorithm which allows the
concurrent determination of components where:

f
(k+1)
j = argminfj

J(

j−1
∑

s=1

f (k)
s + fj +

m
∑

s=j+1

f (k)
s ).

This approach is basically a block Jacobi method and converges considerably
slower than the original backfitting which is a block Gauss-Seidel method.
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In [17] a method has been introduced which combines advantages of the
additive approach with fast convergence. The idea of this algorithm is based on
the combination technique [12, 15]. In order to be able to apply the combination
technique one requires that

1. The regular spaces which define the sparse grid also contain all the intersec-
tions of any two generating grids (which is regular as well).

2. If one first fits any of the component grids to the data, then evaluates on
the data and then fits these values to a different component grid one gets
exactly the fit onto the intersection of the two components.

In this case it can be seen that there are coefficients γj which do not depend on
the data such that sparse grid f which fits the data is given by

f =

m
∑

j=1

γjfj

where the fj are the fits of the components onto the data.
In general, this formula would not hold but one can define an iterative tech-

nique where f
(0)
j = 0 and

f
(k+1)
j = f

(k)
j + argmingj

J(f (k) + gj)

where gj is in the j-th component space, where

f (k) =
m

∑

j=1

γ
(k)
j f

(k)
j

and where the coefficients γ
(k)
j are chosen such that for the given f

(k)
j the func-

tional J(f (k)) is minimised. This algorithm allows the parallel determination of
all the components fj . It can be seen that the algorithm has similar performance
to the backfitting approach, see [17].

The most difficult part of learning with sparse grids is the determination
of the sparse grid space from the data. Only a heuristic, greedy approach is
available here. The algorithm uses the natural ordering of the sparse grids given
by the subgrid relation. It starts with a grid with one point and considers all next
larger grids, the so-called covering grids. The covering sparse grid with the best
performance is selected as the next candidate space in the iteration. This greedy
algorithm is similar to the one used in the MARS method [8]. After a relatively
fine grid is obtained crossvalidation or test data is used to prune the grid. Note
that the procedure used is closely related to subspace or variable selection.

2.4 A sparse grid web service

For ease of use, the sparse grid predictive modelling capacity is delivered by a
web server using forms to select the type of analysis and data sets required. A
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first prototype demonstrator is available, see http://datamining.anu.edu.au/
software/geographic. As the fitting procedures are computationally intensive,
the computations are done on a remote high performance computing centre. The
data resides in a data repository which is typically neither collocated with the
computing centre nor the web server. This requires a distributed application
which has to be able to access remote data, do remote computing and deliver
the results over the web. The components of a first demonstrator are displayed
in figure 2. An example of a web page delivered by the demonstrator is given
in figure 3. At this stage the actual sparse grid space can be chosen by hand.
The demonstrator will be further developed, in particular general data sets, grid

browser

web client

http

web server (datamining.anu.edu.au)

ftp

http

HPC server (sc.anu.edu.au) HPC nodes

pbm

data server (fantome.anu.edu.au)

ssh

APAC National Facility

Apache

Python xmlrpc

Python cgi

ANU SRES Pathfinder Site

rsync

Fig. 2. Components of the Service

technology, and further parallel processing will be implemented. The demonstra-
tor requires at this stage that a server process is continuously running on the
high performance compute server. This limitation will also be addressed in the
future.

3 Sparse grid mining

In this section some first results mining geographical data are presented and
then some ideas about further work are developed.

3.1 Sparse grids and geographic processes

A sample of the results from a spatially global sparse grids analysis are given
in figure 4. These results were calibrated using the data set of [18–20], which
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Fig. 3. Web page of the Sparse Grid Web service
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contains sample records for regolith properties as well as continuous surfaces of
topographic and hydrological indices and Landsat spectral response. They used
sparse grids with seventeen grid points in each dimension, with eight variables
and 28 first order interaction grids. From these results it is clear that not all of the
variables are good predictors of silica abundance, and one can easily determine
which is useful.

These results are just a sample of what can be generated, and there are many
potential avenues for data mining of sparse grids. We consider here only three
of the possible approaches that can be used to gain a greater understanding of
geographic patterns and processes.

1. The first consideration is an understanding of where there is a relationship
between the predictor variable and the correlates. As noted above, this is
likely to be in geographically local areas. The approach one can take to anal-
yse this is to use geographically local sample regions and fit a sparse grids
model within them. This is analogous to kernel methods, but the weightings
are calculated using only the geographical coordinates. In the case of sparse
grids, we have devised such a system of analysing geographically local sam-
ples, where a sparse grids model is generated for each of these local samples.
The results are a general improvement over the global model, and are better
than the results of [19, 20] who used an artificial neural network and moving
window regression analyses applied to the same data.

2. However, the above approach can be limiting in that each sample location
uses a different model, ignoring those used elsewhere in the study area. Fol-
lowing from this, one might be interested in where similar processes occur
across a landscape. For example, similar processes controlling a relationship
may occur in several regions across a landscape, but these regions may be
separated by some distance. When a model is generated for a local sample it
can readily be applied to any other location in the study area where there are
sufficient data. By mapping the locations where errors for such a prediction
are low, one might be able to generate interesting hypotheses concerning the
relationships between the response and correlate variables. This is described
further in the next section.

3. The local analyses are very useful approaches to understanding geographic
phenomena. However, one still needs to interpret the underlying relationships
represented by the sparse grid models to understand what relationships there
are. We now consider a sample of these.

One method of interpreting the sparse grids system is an analysis of the
accuracies of each of the input grids. While this can be implemented as a
standard step-wise procedure for model selection (§2.3), the interpretation
of the relationship between each of the different correlates is very valuable
information (fig 4). When it is mapped as a geographic surface then one
can gain even greater insight into the strength of the relationships between
variables throughout a study area. With this information one can begin to
better understand the system of relationships as they vary through space.
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Fig. 4. Residual error density plots for a sample of sparse grids used in a global analy-
sis of silica in relation to topographic, hydrological and Landsat spectral indices. Blue
represents a higher density of prediction/observation combinations, red is lowest. Pre-
dictions from a perfect model will plot along the diagonal.
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The above approach is not particular to sparse grids, as it can be applied to
any predictive model where one can derive the relationships between vari-
ables. What sparse grids also allow one to do is analyse the number of grid
points (and thus model complexity) used for each grid (see §2.1). If the
analysis is conducted such that the number of grid points is optimised to
the data, then some understanding of the nature of the relationship may
be obtained. For example, if the relationship between the correlate and one
predictor variable is consistently represented using few grid points, and has
a reasonably good accuracy, then there is a broad relationship. If many grid
points are used, then the relationship is one of fine detail. This should, of
course, be corrected to allow for the variability of the original data. These
indices can be readily extracted from the sparse grids system.

3.2 Mining sparse grid collections

In addition to the analysis using local predictive models sparse grids allow further
analysis due to the fact that different sparse grids can be readily compared at
various levels. How this can be done is discussed in the following. To focus the
discussion one can consider the fitting problem. As above, one determines a
family of predictive models f(x; z) where z represents the local area. In our
example, the models are determined as the minimisers of a family of functionals

J(f ; p) =
n

∑

i=1

w(‖pi − p‖)(yi − f(xi))
2

where pi are the spatial locations of the observations and p the location of the
local model found. Here the weight functions are given, for example

w(s) = exp(−λs2)

where λ is a given coefficient. Possible centres z used could include a large subset
of the data points xi. Models are then fitted in a greedy way for each of the z. Of
course, the computational requirements are considerably increased in this way.
The difference to the approach considered so far and discussed above is, however,
what is done after all the models have been determined.

After this first step a large number of local sparse grid functions have been
determined which model local data and they all have a spatial attribute. This
collection of spatial models can now be mined using spatial mining tools. As-
pects of spatial mining include the detection of interesting regions, i.e., regions
where certain models are prevalent, e.g., where particular types of correlations
can be found. Another aspect is the detection of spatial trends, i.e., the analysis
of change of the models in space. The underlying ideas are very similar to tradi-
tional spatial data mining, see, e.g. [6] where tools are provided for the detection
of interesting regions which either have concentrations of high values of certain
features [7] or have trends of feature values. The application of this analysis
benefits from the fact that the sparse grid spaces are fairly simple linear spaces.
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Basically, the functions are grouped into classes of similar functions and
the support in the data (similar to association rule mining) and geographical
distribution for each of these classes is determined. Classes can be either given a
priori, or they may be found by clustering. The a priori given classes are obtained
by comparing various features of the locally found models:

– A simple analysis could consider only the set of variables selected for the
sparse grids at different locations. These selected variables are the ones which
jointly provide a best explanation of the variation of the response. The co-
incidence of gradients of the response with gradients in other variables and
possibly higher level variations may be detected. In this case two models are
“the same” if they use the same variables.

– The location and feasibility of linear models can be investigated.
– A slightly more sophisticated analysis would consider the types of interac-

tions used in any one model
– Finally, one can discretise model space and investigate support and location

of specific models.

A challenge of some these approaches is that one needs to introduce a metric on
the sparse grid space in order to find similar models. However, once the metric
has been selected and once the collections of models have been found one may
further mine these collections using methods related to frequent itemset mining.
In addition the geographical distribution of certain classes of models may provide
information about underlying processes.
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CONGO: Clustering on the Gene Ontology
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Abstract. Rapid development of technologies for the collection of bi-
ological data have led to large increases in the amount of information
available for understanding diseases and biological mechanisms. How-
ever, progress has not been as fast in comprehending the data. Devel-
opments in understanding diseases and biological mechanisms governing
them may come from combining data from different sources. We describe
a method of clustering lists of genes identified as important to the un-
derstanding of a childhood cancer using functional information about
the genes from the Gene Ontology. The measure of distance used in the
clustering algorithm is notable for considering the relationship between
terms in the ontology. Meaningful descriptions of clusters are automati-
cally generated from the Gene Ontology terms.

1 Introduction

Rapid developments in bio–technology, measurement and collection of diverse
biological and clinical data have led to revolutionary changes in bio–medicine
and biomedical research. The data collected in bio–medical experiments or as a
result of medical examination ranges from gene expression levels measured using
microarray technologies to data collected in therapy research. Researchers are
looking at discovering relations between patterns of genes (sequences, interac-
tions between specific genes, dependencies between changes in gene expressions
and patient’s responses to treatment). The confluence of bio–technology and sta-
tistical analysis is known as bioinformatics. The “classical” statistical techniques
used in bioinformatics — a broad range of cluster, classification and multivari-
ate analysis methods, have been challenged by the large number of genes that
are analysed simultaneously and the curse of dimensionality of gene expression
measurements. As a rule, the gene–to–data points ratio is high (i.e. the so–called
“wide” data table, i.e. if we are looking at N genes and our sample is of size m,
then usually N ≫ m). When there are more attributes than data records (cases),
problems may arise (for example, there can be strong correlations between some
of the attributes, or the covariance matrix may become singular, the curse of
dimensionality may begin to bite). This challenge has attracted the attention of
researchers in the two very closely related fields of “data mining” (initiated by

⋆ paulk@it.uts.edu.au
⋆⋆ simeon@it.uts.edu.au
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researchers in databases (see [1])) and “intelligent data analysis” (initiated by
researchers working in the area of mathematical statistics and machine learning
(see Chap. 1 in [2])). Bearing in mind that researchers and research communities
often disagree about the precise boundaries of their dedicated field of investi-
gation, further in this paper we refer only to data mining [3] as the “analysis
of large observational data sets to find unsuspected relationships and to sum-
marise the data in novel ways that are both understandable and useful to the
data owner”. There is a number of ways in which data mining is expected to
be able to assist the bio–data analysis (see [4] for brief overview). One impor-
tant area are the tasks of similarity search, comparison and grouping of gene
patterns and assisting in understanding these patterns in medical bio–data, as
many diseases are triggered by a combination of genes acting together. The work
presented in this paper is in this area.

Addressing the “Wide” Data Table Problem

Having many more genes than data points offers a number of strategies for the
analysis of such data [5], that can be grouped in three broader categories: “sum-
marise then analyse” (STA), “analyse then summarise” (ATS) and “summarise
while analysing” (SWA). STA scenario uses an unsupervised learning technique
(e.g. cluster analysis) to reduce the large number of genes to gene clusters (or
gene profiles). The cluster representations then are used for predictive modelling
(see [6]). In ATS scenario, modelling is conducted initially for each gene, pro-
ducing some statistics, and then one can apply some threshold (for example,
select all genes with value of that statistic above the threshold). SWA approach
addresses the issues of possible existence of some relations between the genes,
hence, suggests to proceed with summarisation and classification in a single step.
For example, regression tree model [7] can be used to identify a small subset of
predictive genes.

The above presented scenarios do not consider the utilisation of already ex-
isting knowledge about relations between genes to assist the outcome of the data
mining step. The approach proposed in this paper extends the STA scenario, by
imposing the results of the initial clustering of the genes with further clustering
over an ontology that relates the genes in the input clusters. This approach can
be labelled as “summarise, impose, then analyse” (SITA).

Cluster Analysis and Visualisation

As we have mentioned earlier, clustering algorithms divide the set of genes into
groups so that gene expression patterns within a group are more similar than
the patterns across groups. Most clustering techniques include a “magic” set of
parameters, that one needs to adjust to get “good” clusters. However, in the
case of gene expression data sets, the selection and “tuning” of these parameters
may not be that intuitive and obvious, due to the high dimensionality of the
space. Hence, clustering relies substantially on visualisation. An efficient visual-
isation schema allows to expose problems with the clusters, prompting towards
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some intervention, for example, selection of different similarity and inter–cluster
distance measures, or forcing some of the clusters into one group. The paper
presents a visualisation method that supports the proposed SITA scenario.

In this paper, we use information from one source (the Gene Ontology [8])
to gain an understanding of a list of genes that were generated as the result of
another data mining step. The list of genes is clustered into groups of genes with
similar biological functionality. Descriptions of the clusters are automatically
determined using the Gene Ontology (GO) data.

The broad goals of our bioinformatics project are to improve the understand-
ing of genes related to a specific form of childhood cancer. Data regarding the
relative expression levels of genes (in tumour cells compared with normal cells)
is combined with clinical data (concerning the tumours and patients) to form a
list of “interesting” genes. Details of this step are not relevant to the techniques
explored in this paper.

The Gene Ontology is a controlled vocabulary of terms that describe gene
products in terms of their effect in the cell and their known place in the cell.
Terms in the ontology are interrelated. For example, a “glucose metabolism”
is a “hexose metabolism” (see Fig. 1). In this example, “hexose metabolism” is
a more general concept (or term) than “glucose metabolism”. There are cur-
rently around 16,000 terms in the Gene Ontology and each gene is associated
with between two and ten terms. The relationships between terms in the ontol-
ogy allow us to measure the similarity between genes in a functional way. For
example, one gene may be associated with the term “carbohydrate metabolism”
and another gene associated with “alcohol metabolism”. As can be seen in Fig. 1
both of these terms are child terms (or more specific concepts) of “metabolism”.
Hence, they are related quite closely.

The list of genes, then, is clustered according to the associated Gene Ontology
terms. The clustering considers the interrelationships of terms in the ontology.
Once clusters are created, the terms in the Gene Ontology permit the automatic
construction of cluster descriptions (in terms of the Gene Ontology concepts).

The method of clustering over an ontology is general and may be applied to
(non–biological) data associated with other ontologies.

Applying information from the Gene Ontology to cluster genes allows for
an understanding of the genes and their interrelationships in functional terms.
Currently biologists search through such lists gene–by–gene analysing each one
individually and trying to piece together the many strands of information. Au-
tomating the process, at least to some extent, would allow biologists to concen-
trate more on the important relationships rather than the minutiae of searching
as well as give savings in time and effort.

Related Work

Other workers use the Gene Ontology. There are a variety of browsers for the
Gene Ontology linked from their web site [9]. In general, such browsers have
facilities such as: (i) traversing the large Gene Ontology and viewing their in-
terrelationships; (ii) finding Gene Ontology terms associated with ensembles of
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Fig. 1. A small section of the GO hierarchy from the “biological processes” ontology.
Each node is a term in the ontology. Inside each node is the identifier for the term and
beside is the term itself. More general terms are towards the top of the diagram. All
links shown are is–a relationships that are directed upwards

genes; or (iii) finding known genes associated with particular Gene Ontology
terms, to name a few.

Many tools (for example, eGOn [10] or FatiGO [11]) take as input a list of
genes (often resulting from microarray experiments) and map the genes to GO
categories. Most of these tools additionally allow comparison of GO mappings
between different gene lists usually with some statistical measure of the similar-
ity of distributions. The tools GOMiner [12] [13] and EASE [14] [15] additionally
look for “biological themes” in lists of genes. That is, they identify the predomi-
nant set of GO terms that describe the entire gene list. They have a similar goal
to the method we propose, except that we first cluster the data into subsets of
related genes.

Hierarchical information is also used with other data mining techniques (pos-
sibly unrelated to biology). For example, [16] and [17] use ontological information
to mine “generalized” association rules. The “basic” algorithm in [17] takes an
approach that is reminiscent of ours (ie. simply including information from higher
in the tree). Both the generalized association rules and the ontological clustering
in this paper use the idea of combining specialised concepts but have different
goals. The generalized association rules combine them to produce stronger rules,
whereas we combine concepts to build looser forms of equivalence to make the
clustering more flexible.
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Method Overview

The cluster analysis and visualisation described in this paper takes as input (i) a
list of genes highlighted from a previous data mining step and (ii) data from the
Gene Ontology. The previous data mining step used gene expression data (from
cDNA microarray experiments) and clinical data describing the tumour cells
in detail, effect of drug protocols and (human) classifications of patients into
high or low risk categories. cDNA microarray experiments are a recent technol-
ogy available to cellular biologists that measure the relative expression levels of
thousands of genes in cells at one instant. Expression levels of genes in a test
sample (i.e. tumour cells) compared to genes in a control sample (i.e. “normal”
cells) are measured.

Gene Ontology terms are associated with each gene in the list by searching in
the SOURCE database [18]. The list of genes is clustered into groups with similar
functionality using a distance measure that explicitly considers the relationship
between terms in the ontology. Finally, descriptions of each cluster are found by
examining Gene Ontology terms that are representative of the cluster. Graphs
of Gene Ontology terms for each cluster together with cluster descriptions give
a visualisation of each cluster in functional terms.

2 The Gene Ontology

The Gene Ontology [8] is a large collaborative public database constructed by re-
searchers world–wide. It provides a set of controlled vocabularies (i.e. ontologies)
of terms that describe gene products in terms of their effect in the cell. That
is, their functionality. The goal of the Gene Ontology is “to produce a dynamic,
controlled vocabulary that can be applied to all eukaryotes even as knowledge
of gene and protein roles in cells is accumulating and changing” [8].

As described in Sect. 1 the Gene Ontology contains terms and their interrela-
tionships (parent/child, general/specific, etc). Three ontologies are defined in the
Gene Ontology: (i) biological processes, (ii) cellular components, and (iii) molec-
ular functions. The ontologies are directed acyclic graphs (DAGs) where the
terms form nodes and two kinds of relationships form edges: “is–a” relationships
such as “glycolysis” is–a “glucose catabolism” and “part–of” relationships such
as “nuclear chromosome” is part–of “nucleus”. Apart from the specific individ-
ual terms, the Gene Ontology is unremarkable in this regard. All ontologies are
DAGs of terms.

Each term in the ontology has a number of attributes: the term itself (eg. gly-
colysis), a unique accession number (eg. GO:0006096), and a definition (eg. the
breakdown of a monosaccharide (generally glucose) into simpler components,
including pyruvate). There may also be technical references to the definition
(eg. links to PubMed articles), cross references into other biological databases,
synonyms and comments.

There are a number of benefits of using the Gene Ontology as part of the
data mining process. It is large (7045 terms in the Molecular Function ontology,
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7763 terms in the Biological Process ontology and 1335 terms in the Cellu-
lar Component ontology as of 16 September 2003 [9]) and well worked on by
researchers (16 member organisations of the Gene Ontology Consortium as of
August 2003 [9]). Entries are curated before being added to the ontology. The
ontology may be accessed in the RDF XML file format. In this computer legible
form it is easier to apply the information to data mining methods and immedi-
ately richer than by determining similar information with text mining methods.

GO terms may be associated with genes using databases like SOURCE [18]
as long as accession numbers of genes or gene names are known. See Table 1 for
an example.

Table 1. GO terms associated with an example gene (named CLK1) for each of the
three ontologies.

CLK1 (CDC–like kinase 1)

Molecular Function

GO:0004715 non–membrane spanning protein tyrosine kinase activity
GO:0005524 ATP binding activity
GO:0004674 protein serine/threonine kinase activity
GO:0016740 transferase activity

Biological Process

GO:0006468 protein amino acid phosphorylation
GO:0008283 cell proliferation
GO:0000074 regulation of cell cycle

Cellular Component

GO:0005634 nucleus

3 Clustering over Ontologies

Many algorithms exist for clustering data (see for example [19] or [20]). The data
we wish to cluster is slightly different to normal, however, and this advises our
choice of algorithm and distance measure.

There are two main differences between our clustering and “normal” cluster
analysis. The first difference is that there are a different number of attributes
(GO terms) for each gene to be clustered whereas usually the number of at-
tributes in a dataset is the same for all records. Secondly, we are interested in
complex relationships between terms (as a result of the structure of the ontology)
so simply comparing values of terms with one another will not be sufficient.

Both difficulties stem from the fact that there is an ontology associated with
the data. Once we solve the data mining problem of clustering over an ontology,
the special case of clustering over the Gene Ontology will follow easily.
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Similarities might be drawn with clustering text documents (for example into
spam and non–spam), as there are different numbers of words in each document
and complex relationships among the words (ontological ones too). One approach
to clustering documents is to use a fixed length vector of word counts in each
document, with each vector position representing a different word (drawn from
an a priori prescribed list). In this way each document to be classified with po-
tentially many different words and counts of words is reduced to a fixed number
of attributes with all documents having the same number of attributes.

A similar approach could be applied to cluster the genes and GO terms.
A fixed length binary vector of the union of all GO terms in the genes could
be set up as the attributes for each gene. A bit would be set if the term was
associated with the gene or unset if there was no association. Such an approach,
however, suffers from two defects. Firstly, the vast majority of GO terms are only
associated with one gene in the dataset. This would mean the binary vectors
for genes would be very sparse and few similarities could be found with the
vectors for other genes in the dataset. The other, more serious, problem with
this approach is that it does not take into account the ontological relationships
at all.

Our method solves the problem of different numbers of attributes by treating
all the terms for a gene as essentially one attribute. The second problem of con-
sidering the ontological relationships is accomplished by using a more specialised
distance function that compares a set of terms based on their relative positions
in the ontologies, rather than just the value of the term, which is, essentially,
meaningless.

The distance function, then, is the crucial element and the particular clus-
tering algorithm used is a secondary consideration. We use a simple clustering
algorithm named the Modified Basic Sequential Algorithmic Scheme (MBSAS).
This particular algorithm was chosen because of its simplicity and because it
is not necessary to specify a priori the number of clusters. One of many other
algorithms (eg. k–means) could have been used instead.

In the following two subsections we will describe in more detail the distance
measure and the MBSAS clustering algorithm.

Distance Measure

The elements to be clustered have different numbers of attributes and this means
that a special distance measure must be used. The distance measure is special
in that it measures distances across the ontology. The distance measure is in
some ways more important than the actual clustering algorithm as any of many
different clustering algorithms may be used, but a distance measure similar to
this must be used to traverse the ontology.

We use a function adapted from the Tanimoto Measure [19] [20]. The Tani-
moto measure provides a measure of similarity between sets:

nX∩Y

nX + nY − nX∩Y

=
nX∩Y

nX∪Y

(1)
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where X and Y are the two sets being compared and nX , nY and nX∩Y are the
number of elements in the sets X, Y and X ∩ Y respectively.

In our situation, the “sets” being compared are the GO terms for two genes.
However, for reasons which will become clear, “bags” (where elements may be
repeated) are used rather than sets.

An important characteristic of our distance measure is that it considers terms
higher in the ontology. This is because the GO terms themselves are simply con-
stant values with no implicit relationship to other terms. As in any ontology, the
relationship between terms arises from their relative positions in the hierarchy.
So, for each gene we wish to compare, we add to the gene’s associated GO terms
all terms higher in the ontology. These terms form a “background” or context
to the terms explicitly associated with the gene. However, as the ontologies are
tree–like, two terms in a gene often have the same ancestors. We include the
parent terms each time they are encountered, so we require bags rather than
sets.

Terms higher in the ontology represent terms that are more general. Although
general terms are a factor in the comparison, the more specialised terms (i.e.
lower in the hierarchy) are more important. For this reason, when counting
the number of terms in a bag, terms are weighted by their distance from their
descendent GO term explicitly associated with the gene. In effect, we calculate
a “weighted” cardinality of the bag of GO terms.

The final distance function used, then, is

DX,Y =
n′

X∩Y

n′

X + n′

Y − n′

X∩Y

=
n′

X∩Y

n′

X∪Y

(2)

where X and Y are the two bags of terms being compared and n′

X , n′

Y and
n′

X∩Y are the weighted cardinalities of the bags X, Y and X ∩ Y respectively
given by

n′

X =
∑

i∈X

cdi (3)

where X is the bag of GO terms, di is the distance of element of X with index i

from its associated descendent in the original set of GO terms for the gene, and
c is the weight constant. The weighted cardinality of the other bags is similarly
defined.

The more general terms provide a context for the lower level terms directly
associated with genes. The c parameter allows variation of the importance of the
“context” to the comparison. A value of c = 0 means that ancestral terms are
not considered. A value of 1 would mean that all terms are considered equally as
part of the context. Plainly, in this case though, the very general terms would be
regarded as overly important. The c parameter, then, may be viewed as a sort
of “constant of gravity” for the clusters. The higher the value of c, the easier it
is that distantly related genes gather into a cluster. We arbitrarily chose c = 0.9
for our experiments.

Other distance measures apart from a gene–to–gene distance are also required
for use in the clustering algorithm. A measure of the distance between a gene
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and a cluster of genes is determined by taking the average distance from the gene
to each gene in the cluster. Similarly when calculating the distance between two
clusters of genes we use the average of the distances for each gene of one cluster
to the genes in the other cluster. An alternative to using the mean distances
would be to use minimum (or maximum) distances. We plan to explore these
possibilities in the future.

Cluster Algorithm

With the intention of attacking the clustering problem as simply as possible,
we use a standard simple clustering algorithm called Modified Basic Sequential
Algorithmic Scheme (MBSAS) as described by [19]. MBSAS has two advantages
compared with other algorithms such as the ubiquitous k–means algorithm. It
is (i) not necessary to specify a priori the number of clusters; and (ii) the data
is presented to the algorithm only a few times (depending on the particular
variation of MBSAS chosen).

The variation of MBSAS we use is dependent on three parameters (and one
other parameter is necessary for the distance measure). These parameters are
shown in Table 2. Whilst MBSAS does not require an explicit parameter for the
number of clusters, the parameters (Θ, q and M1) have the same effect.

Table 2. Parameters used in the Modified Basic Sequential Algorithmic Scheme clus-
tering algorithm. The last parameter is used only in the distance measure and is not
formally part of MBSAS. See text for a detailed description of c.

Parameter Meaning

Θ Minimum distance for points to be considered to be in the
same cluster. (Theodoridis and Koutroumbas [19] call this the
“threshold of dissimilarity”).

q Maximum allowable number of clusters.
M1 Minimum distance for clusters to be deemed separate before

they are merged.
c Discount weight applied to GO nodes in the ontology.

The MBSAS algorithm has four main steps as described below. The first two
steps are mandatory, whilst the latter two are optional.

1. determine_clusters

2. classify_patterns

3. merge_nearby_clusters (optional)

4. reassign_points (optional)

The determine_clusters step determine the initial clusters. It chooses up
to q data points that are sufficiently distant from one another (using the Θ

parameter) as point representatives.
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After finding the initial clusters the next step (classify_patterns) classifies
the rest of the patterns into the cluster that is closest using DX,Y as defined
in (2).

Theodoridis and Koutroumbas [19] describe two general drawbacks of se-
quential clustering algorithms. They are (i) that clusters may arise that are very
close together and (ii) that they are sensitive to the order of presentation of the
data. The third and fourth steps address these problems respectively. Although
optional, we always perform them.

The merge_nearby_clusters step identifies clusters having a distance less
than the value of parameter M1 and merges them together.

Finally, in the reassign_points step, all points are reassigned to their closest
cluster so as to minimise the effects of the presentation order of the data and
any changes due to the merge_nearby_clusters step.

4 Experiments

As described in Sect. 1 the data used for this paper was a list of genes highlighted
as the result of a previous data mining procedure. Information from the Gene
Ontology was matched to the genes using the SOURCE database.

There are, at this stage, two goals for our experiments: (i) discovery of pa-
rameter values that produce acceptable clusters and (ii) determination of ways
to visualise the clusters.

The parameter values Θ and M1 are dependent on the range of values re-
turned by the distance measure DX,Y and have been determined largely by trial
and error. In the experiments described in this paper, Θ is set to 0.001 and M1

to 0.1. The maximum number of clusters (q) is set at 5 and, as described above,
c, the discounting constant for more general terms is set at 0.9.

Visualisation of clusters is made difficult by the fact that there is no clear
way to transform genes into coordinates to plot on a single graph because each
gene is identified by different numbers of GO terms. So we plot the terms for all
the genes on a graph with their relationships shown in different shades for each
cluster. We also automatically build cluster descriptions from the terms in each
cluster.

5 Results

With the parameters values given above (i.e.Θ = 0.001, M1 = 0.1, q = 5 and
c = 0.9) five clusters are found as shown in Table 3. Half of the genes have been
allocated to one cluster. The rest of the genes have been split into four smaller
clusters with one cluster containing only two genes. Such a tabular representation
does not increase our understanding of the clusters as the gene accession codes
are not descriptive.

With this in mind, we plotted the subset of terms associated with the clus-
tered genes as nodes on a graph with relationships represented by edges and the

simeon
Australiasian  Data Mining Workshop  ADM03

simeon
190



Table 3. Clusters found with the MBSAS clustering algorithm. The codes AAnnnn

are GenBank accession codes.

Cluster Gene Genes
Number Count

0 6 AA040427 AA406485 AA434408 AA487466 AA609609
AA609759

1 2 AA046690 AA644679
2 6 AA055946 AA398011 AA458965 AA487426 AA490846

AA504272
3 9 AA112660 AA397823 AA443547 AA447618 AA455300

AA478436 AA608514 AA669758 AA683085
4 20 AA126911 AA133577 AA400973 AA464034 AA464743

AA486531 AA488346 AA488626 AA497029 AA629641
AA629719 AA629808 AA664241 AA664284 AA668301
AA669359 AA683050 AA700005 AA700688 AA775874

GO nodes of a cluster localised to one part of the graph as much as possible
(Fig. 2). The clusters are represented by the five large boxes with the cluster
numbers (as listed in Table 3) given inside each box. Nodes inside the clusters
are the GO terms associated with genes in that cluster. More general terms are
on the right hand side of the diagram. Edges between nodes represent the links
in the ontology. Some terms, particularly the more general ones at the right
hand side of the diagram, have links from terms in a different cluster. Each node
is shown in only one cluster box, but links between the boxes show where GO
terms are shared by genes in the different clusters. The grey scale of the link
represents the cluster that link is in. Also, a darker grey scale is used for links
in the original dataset whilst a lighter shade is used for relationships inferred
from traversing the ontology. Inside some cluster boxes may be seen links from a
different cluster (if both child and parent terms are drawn in one cluster box, but
the link is also in another cluster). For example, inside the large middle cluster
(representing cluster 4) may be seen some links associated with the second top
cluster (representing cluster 3) although this is difficult to see on the diagram.
It is likely that these are either outliers or indicators of poor clustering.

Figure 2 is reminiscent of the dendrograms that are used in hierarchical clus-
tering. This is hardly surprising since both methods are dealing with hierarchies.
However, in Fig. 2 the length of edges is not correlated to the distance between
nodes (as in dendrograms). We will apply a hierarchical clustering algorithm in
the future.

Figure 3 shows essentially the same information as Fig. 2 except that the
more general terms are at the bottom of the diagram. To improve the readability
of the diagram, the cluster boxes are in a different order than in Fig. 2. Again,
cluster numbers are given inside each box. The GO terms lying along the bottom
edges of the cluster boxes are clearer in this diagram, particularly those on the
left– and rightmost cluster boxes (clusters 3 and 4). These terms are part of
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Fig. 2. Parts of the GO hierarchy associated with genes being clustered. More general
terms are at the right of the diagram. See text for description of graph
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the most general descriptions for a cluster that do not also describe another
cluster. Figure 4 shows a closer view of the terms at the bottom edge of the large
rightmost cluster (number 4). These terms are used to automatically determine
cluster descriptions. Another feature visible in Fig. 3 are the links that fly from
one cluster to another. These are important because they show where cluster
meanings overlap or blur together. The rope of links at the bottom right of
the diagram is unimportant as these links are to the most general terms and
therefore, the least descriptive for our purposes.

A good visualisation of clusters should make evident the properties that genes
in a cluster share. Essentially this entails a functional description of a cluster. A
good description might also state how the cluster differs from other clusters.

The ontology is able to describe how genes are similar. Cluster descriptions
are inferred in the following way. Starting with all the GO terms directly asso-
ciated with genes in a particular cluster, we climb the hierarchy replacing GO
terms with their parent terms. Terms are replaced only if the parent node is not

associated with genes in another cluster (or is one of any of the ancestor terms
in another cluster). This results in a list of terms for a cluster that describe in
the most general way possible the union of functionalities of all genes in that
cluster (but not so general that it describes another cluster).

Cluster descriptions derived in this way are shown in Table 4. Only the is–a

relationships were followed to build this table. We expect to trace the part–

of relationships in future work. There are far fewer part–of relationships in the
hierarchies so we do not believe that omitting them affects the results. The cluster
descriptions give some insight to the genes in the cluster and also give feedback
on the quality of the clustering. The terms listed in the table are associated only
with genes in each cluster and not in any other cluster.

Cluster 0 in Table 4 has no terms that are associated with more than one
gene. This suggests that the genes in the cluster are either unrelated or related
only in ways that are sufficiently high level that the terms exist in other clusters.
This suggests that the quality of the cluster is not good.

The other clusters, however, have genes that are more strongly interrelated.
Cluster 1 contains at least two genes that are related to the cell cytoskeleton
and to microtubules (microtubules are components of the cytoskeleton). Clus-
ter 2 contains three or four genes associated with signal transduction and cell
signalling. Cluster 3 contains three or four genes related to transcription of genes
and cluster 4 seems to contain genes associated with RNA binding.

The question, however, may be asked: what about the other genes in the
clusters? What is their relationship? Are these genes unrelated to the “core”
description of the cluster and just bundled into the cluster because the maximum
number of clusters q has been reached, or are there more subtle relationships?
The simple statistic of the number of genes associated with each GO term in
the cluster is insufficient to answer the question. The names of the individual
genes are required. This will be investigated further in future work. Also, we plan
to cluster the data into more clusters, perhaps with an hierarchical clustering
algorithm to determine whether better descriptions and “tighter” clusters result.
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Fig. 3. Diagram showing essentially the same information as Fig. 2 except that impor-
tant descriptive GO terms are more visible. See text for description of graph
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Table 4. Principal cluster descriptions for the genes clustered with the MBSAS algo-
rithm derived as stated in the text. The last column gives the number of genes in the
cluster associated with the term.

GO ID GO Term Number
of Genes

Cluster 0 — 6 genes

20 GO terms but each associated with only one gene 1

Cluster 1 — 2 genes

GO:0008092 cytoskeletal protein binding activity 2
GO:0007028 cytoplasm organization and biogenesis 2
GO:0003774 motor activity 2
GO:0005875 microtubule associated complex 2

5 GO terms but each associated with only one gene 1

Cluster 2 — 6 genes

GO:0004871 signal transducer activity 4
GO:0007154 cell communication 4

GO:0005887 integral to plasma membrane 3
GO:0005886 plasma membrane 3

GO:0005194 cell adhesion molecule activity 2

11 GO terms but each associated with only one gene 1

Cluster 3 — 9 genes

GO:0030528 transcription regulator activity 4

GO:0008134 transcription factor binding activity 3
GO:0006366 transcription from Pol II promoter 3
GO:0003700 transcription factor activity 3
GO:0006357 regulation of transcription from Pol II promoter 3

5 GO terms but each associated with only two genes each 2

13 GO terms but each associated with only one gene 1

Cluster 4 — 20 genes

GO:0003723 RNA binding activity 10

GO:0030529 ribonucleoprotein complex 9
GO:0009059 macromolecule biosynthesis 9
GO:0006412 protein biosynthesis 9
GO:0005829 cytosol 9

GO:0003735 structural constituent of ribosome 8

2 GO terms but each associated with only four genes each 4

5 GO terms but each associated with only three genes each 3

1 GO term associated with only two genes 2

33 GO terms but each associated with only one gene 1
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Fig. 4. Diagram showing a close up of the most general GO terms in the large cluster.
See text for further description

Another consideration with the possibility of clusters being overly large is that
the value of c, the “constant of gravity”, might be too large for this dataset. We
plan to examine the consequences of lower values of this parameter.

It is also instructive to understand how clusters are different. In a similar
way to that described for finding descriptions of clusters, we can build a list of
terms that are shared by one other cluster (at their most general level possible).
This tells us how two clusters are similar, but different to other clusters. It is
essentially an ontological measure of the distance between clusters. The same
sort of algorithm could be used for different groupings of clusters. However, an
explosion of computational complexity soon occurs.

6 Future Work

Future work may be categorised into four areas: cluster validation, cluster refine-
ment, experimentation with other algorithms and integration of feedback from
domain experts.

Validation of the clustering algorithm and the resultant clusters is required
to ensure that the clusters describe anything worthwhile. We plan to validate
the clustering in three ways: (i) hand choose a set of genes for known GO re-
lationships and then determine whether the clustering algorithm infers at least
those relationships; (ii) examine the effect of different sets of q and Θ parameters
(as well as the other two parameters) with the aim of seeing whether clusters
break up and combine smoothly; and (iii) compare the results of our clustering
algorithm with other similar systems.
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The clustering algorithm will be refined in the following two ways: (i) the
stability of clusters needs to be analysed with respect to the order of presentation
of data; and (ii) choice of parameter values requires more understanding.

Different clustering algorithms will be tried. MBSAS was simply a starting
point. At least k–means and hierarchical clustering algorithms will be attempted.

The clustering behaviour must be refined based on feedback from medical
experts who understand the different genes and will be able to determine whether
the clustering increases their understanding of the genes. Cluster analysis like
this project is, in some ways, an exercise in prototyping. Once the domain experts
gain some knowledge they are able to ask other questions.

7 Conclusions

This paper describes a technique for clustering genes according to their func-
tionality as defined by associated terms in the Gene Ontology. The clustering
algorithm is notable for considering the relationships between terms by travers-
ing the ontology.

The Gene Ontology is used to visualise the clusters by automatically building
cluster descriptions. Preliminary results clustering genes give insights into the
clusters and the efficacy of the clustering algorithm.
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Abstract. Mining data streams is an emerging area of research given the potentially

large number of business and scientific applications. A significant challenge in analy z-

ing/mining data streams is the high data rate of the stream. In this paper, we propose a 

novel approach to cope with the high data rate of incoming data streams. We termed 

our approach “algorithm output granularity”. It is a resource-aware approach that is 

adaptable to available memory, time constraints, and data stream rate. The approach

is generic and applicable to clustering, classification and counting frequent items min-

ing techniques. We have developed a data stream clustering algorithm based on the al-

gorithm output granularity approach. We present this algorithm and discuss its im-

plementation and empirical evaluation. The experiments show acceptable accuracy ac-

companied with run-time efficiency. They show that the proposed algorithm outper-

forms the K-means in terms of running time while preserving the accuracy that our al-

gorithm can achieve.

1   Introduction

A data stream is a sequence of unbounded, real time data items with a very high data 

rate that can only read once by an application [2], [16], [17], [24], [25]. Data stream 

analysis has recently attracted attention in the research community. Algorithms  for

mining data streams and ongoing projects in business and scientific applications have 

been developed and discussed in [2], [13], [19]. Most of these algorithms focus on 

developing approximate one-pass techniques .

Two recent advancements motivate the need for data stream processing systems 

[16],[24] :

• The automatic generation of a highly detailed, high data rate sequence of 

data items in different scientific and business applications. For example: satel-

lite, radar, and astronomical data streams for scientific applications, and stock 

market and transaction web log data streams for  business applications.

• The need for complex analyses of these high-speed data streams such as 

clus tering and outlier detection, classification, frequent itemsets and count-

ing frequent items.
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There are recent projects that stimulate the need for developing techniques that 

analyze high speed data streams in real time. These include:

• JPL/NASA are developing a project called Diamond Eye [5]. They aim to e n-

able remote systems as well as scientists to analyze spatial objects in real time 

image stream. The project focuses on enabling “a new era of exploration us-

ing highly autonomous spacecraft, rovers, and sensors”[5].

• Kargupta et al. [19], [21] have developed MobiMine. It is a client/server PDA -

based distributed data mining applic ation for financial data streams. 

• Kargupta et al. [20] have developed The Vehicle Data Stream Mining Sy stem

(VEDAS) which is a ubiquitous data mining system that allows contin uous

monitoring and pattern extraction  from data streams generated  on-board a 

moving vehicle .

• Tanner et al. [30] are developing EnVironment for On -Board Pro ces sing

(EVE). This  system analyzes data streams continuously generated from

measurements of different satellite on-board sensors using data mining, fe a-

ture extraction, event detection and prediction techniques. Only interesting 

patterns are sent to the ground processing centre saving the limited band-

width.

• Srivastava and Stroeve [29] are developing a  NASA project for onboard d e-

tection of geophysical processes such as snow, ice and clouds using kernel 

clustering methods for data compression conserving the limited bandwidth

needed to send streaming images  to the ground centers.

These projects and others demonstrate the need for data stream analysis tech-

niques and strategies that can cope with the high data rate and deliver the analysis 

results in real time in resource constrained environments. 

There are two strategies for addressing the problem of the high speed nature of 

data streams. Input and output rate adaptation of the mining algorithm is the first strat-

egy. The rate adaptation means controlling the input and output rate of the mining 

algorithm according to the available resources. The algorithm approximation by d evel-

oping new light-weight techniques that have only one look at each data item is the 

second strategy. The main focus of mining data stream techniques proposed so far is 

the design of approximate mining algorithms that have only one-pass or less over the 

data stream. In this paper, we propose a novel approach that is able to mine data 

streams in one pass. Moreover, it is adaptable to memory, time constraints and data 

stream rate. We termed our approach as algorithm output granularity (AOG). This 

approach has the advantage of simplicity, generality and is an enhancement of the 

approximate algorithms research by being resource-aware. That means that the alg o-

rithm can adapt the output rate according to available resources. 

The paper is organized as follows. Section 2 is a discussion on issues related to 

mining data streams and proposes our algorithm output granularity approach. One-

pass mining techniques using our approach are proposed in section 3. The empirical

studies for clustering data streams using algorithm output granularity are shown and 

discussed in section 4. Section 5 presents related work in mining data streams alg o-

rithms. Finally, we conclude the paper and present our future work in section 6.
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2 Issues in Mining Data Streams

In this section, we present issues and challenges that arise in mining data streams and 

solutions that address these cha llenges. Fig. 1 shows the general processing model of 

mining data streams. 

Fig. 1. Mining Data Stream Process

Issues and challenges  with mining data streams:

1) Unbounded memory requirements due to the continuous feature of the in-

coming data elements. 

2) Mining algorithms require several passes over data streams and this is not 

applicable because of the high data rate feature of the data stream. 

3) Data streams generated from sensors and other wireless data sources create a 

real challenge to transfer these huge amounts of data elements to a central 

server to be analyzed. 

There are several strategies that address these challenges. These include:

1) Input data rate adaptation: this approach uses sampling, filtering, aggrega-

tion, and load shedding on the incoming data elements. Sampling is the pro c-

ess of statistically selecting the elements of the incoming stream that would 

be analyzed. Filtering is the semantics sampling in which the data element is 

checked for its importance for example to be analyzed or not. A ggregation is 

the representation of number of elements in one aggregated elements using

some statistical measure such as the average. While load shedding, which 

has been proposed in the context of querying data streams [3], [31], [32], [33]

rather than mining data streams, is the process of eliminating a batch of sub-

sequent elements from being analyzed rather than checking each element that 

is used in the sampling technique. Fig. 2 illustrates the idea of data rate adap-

tation from the input side using sampling.
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Fig. 2. Data Rate Adaptation using Sampling

2) Output concept level: using the higher concept level in applying data mining

in order to cope with the data rate, that is to categorize the incoming elements

into a limited number of categories and replacing each incoming element with 

the matching category according to a specified measure or a look-up table.

This would produce fewer results conserving the limited me mory. Moreover, 

it would require fewer number of processing CPU cycles.

3) Approximate algorithms: design one pass mining algorithms to approximate

the mining results according to some acceptable error margin.

4) On-board analysis : To avoid transferring huge amounts of data, the data min-

ing would be done at the data source location. For example, (VEDAS) project

[20], (EVE) project [30] and Diamond Eye project [5]. This however assumes 

the availability of significant computational resources at the site of data 

stream generation.

5) Algorithm output granularity: This is our proposed solution approach. It 

uses a control parameter as a part of the algorithm logic to control the output 

rate of the algorithm according to the available memory, the remaining time to 

fill the available memory before incremental knowledge integration takes place 

and the data rate of the incoming stream. Fig. 3 shows the idea of our pro-

posed approach.
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Fig. 3. Algorithm Output Granularity Approach

Algorithm output granularity:

To demonstrate our approach in mining data streams, we first define the following 

terms:

Algorithm threshold:  is a controlling parameter built in the algorithm logic that e n-

courages or discourages the creation of new outputs according to three factors that 

vary over temporal scale:

a) Available memory.

b) Remaining time to fill the available memory.

c) Data stream rate.

Output granularity: is the amount of generated results that are acceptable accord-

ing to specified accuracy measure. This amount should be resident in memory before 

doing any incremental integration.

Time threshold: is the required time to generate the results before any incremental 

integration according to some accuracy measure. This time might be specified by the 

user or calculated adaptively based on the history of running the algorithm.

The main steps for mining data streams using our proposed approach:

1) Determine the time threshold and the algorithm output granularity.

2) According to the data rate, calculate the algorithm output rate and the alg o-

rithm threshold.

3) Mine the incoming stream using the calculated algorithm threshold.

4) Adjust the threshold after a time frame to adapt with the change in the data 

rate using linear regression.

5) Repeat the last two steps till the algorithm lasts the time interval threshold.

6) Perform knowledge integration of the results.

The following section will show the use of algorithm output granularity in cluster-

ing, classification and frequent items mining a lgorithms.

3 Algorithm Granularity based Mining Techniques

In the following subsections, we show the application of the algorithm output granu-

larity to clustering, classification and frequent items.

3.1 LWC

In this section, our one-look clustering algorithm (LWC) is explained and discussed.

The algorithm has two main components. The first one is the resource-aware RA com-

ponent that uses the data adaptation techniques to catch up with the high-speed data 

stream and at the same time to achieve the optimum accuracy according to the avail-

able resources. The process starts by checking the minimum data rate that could be 

achieved using data adaptation techniques with an acceptable accuracy. If the alg o-

rithm can catch up with the minimum data rate, the RA component tries to find a solu-

tion that maximizes the accuracy by increasing the data rate. Otherwise the algorithm 
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should send a data mining request to a data mining server that can achieve the mini-

mum acceptable accuracy.

The other component is the LWC algorithm. The algorithm follows the following 

steps:

1- Data items arrive in sequence with a data rate.

2- The algorithm starts by considering the first point as a center.

3- Compare any new data item with the centers to find the distance.

4- If the distance for all the centers is greater than a threshold, the new item is 

considered as a new center; else increase the weight for the center that has 

the shortest distance between the data item and the center by 1 and let the 

new center equals the weighted average.

5- Repeat 3 and 4.

6- If the number of centers = k (according to the available memory) then create a 

new centers vector.

7- Repeat 3, 4, 5, and 6.

8- If memory is full then re -cluster (integrate clusters) and send to the server if 

needed.

The algorithm output granularity (k) is represented here by the number of cluster 

centers’ kept in memory before doing any incremental re-clustering.  The higher the 

algorithm granularity the higher is the algorithm accuracy. The threshold value here 

represents the minimum distance between any point and the cluster center. The lower 

the threshold the more the clusters is created. 

Fig. 4 shows the pseudo code for this algorithm. The following is the notation used 

in the algorithm pseudo code.

Let D be the data rate in items/second.

Let Max(D)  be unfiltered data rate in items/second.

Let Min(D)  be filtered and aggregated data rate in items/second.

Let AR be algorithm rate: number of centers generated by the algorithm in cen-

ters/second.

Let Dist  be the minimum distance between any point and the cluster center.

Let M be number of memory blocks, each block can store one center.

Let T be the time needed for generating a number of Centers that can fit all the 

memory blocks in seconds.

Let TT be the time threshold that is required for the algorithm accuracy in sec-

onds.
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Fig. 4. Light-Weight Clustering Algorithm

The algorithm according to the given threshold and the data set domain generates 

the maximum number of subsequent data items , each of which represents a center; that 

will be given using the following formula:

Maximum number of subsequent data points that could be centers = [(Maxi-
mum item value in the data set - Minimum item value in the data set) / 
threshold].

Since these points in the worst case might be the first points in the data stream in 

order for them to be centers, the following formula gives the number of data elements 

that would do the comparison over the generated centers:

Cluster Members = Data Set Size -  [(Maximum item value in the data set -
Minimum item value in the data set)  / threshold].

Thus the algorithm complexity is O(nm) , where “n” is the data set size, and “m” is 

maximum number of subsequent data points that could be centers.

We have performed experimental evaluation and compared our algorithm with k-

means. The results presented in Section 4 shows that our algorithm outperforms k-

means in running time with an acceptable accuracy. 

1. x = 1, c=1, M = number of memory blocks available

2. Receive data item DI[x].

3. Center[c] = DI[x].

4. M = M -1

5. Repeat

a. x = x+1

b. Receive DI[x]

c. For i = 1 to c

Measure the distance between Center[i]

and DI[x]

         d. If distance > dist (The threshold)

            Then

c=c+1

if (M <> 0)

Then

Center[c] = DI[x] 

Else

Recluster DI[]

Else

For j=1 to c

Compare between Center[j] and DI[x] to find 

the shortest distance.

Increase the weight for the Center[j] with 

the shortest distance.

Center[j] = (Center[j] * weight + DI[x]) / 

(weight + 1)

simeon
Australiasian  Data Mining Workshop  ADM03

simeon
205



3.2 LWClass

In this section, we present the application of the algorithm output granularity to light 

weight K-Nearest-Neighbors classification LWClass. The algorithm starts with

determining the number of instances according to the available space in the main 

memory. When a new classified data element arrives, the algorithm searches for the 

nearest instance already in the main memory according to a pre-specified distance 

threshold. The threshold here represents the similarity measure acceptable by the 

algorithm to consider two or more elements as one element according to the element

attributes’ values. If the algorithm finds this element, it checks the class label. If the 

class label is the same, it increases the weight for this instance by one, otherwise it 

decrements the weight by one. If the weight becomes zero, this element will be

released from the me mory. The algorithm granularity here could be controlled by the 

distance threshold value and could be changing over time to cope with the high speed 

of the incoming data elements. The algorithm procedure could be described as follows :

1) Data streams arrive item by item. Each item contains attribute values for a1, 

a2, …,an attributes and the class category.

2) According to the data rate and the available memory, we apply the algorithm 

output granularity as follows:

a) Measure the distance between the new item and the stored ones.

b) If the distance is less than a threshold, store the average of these 

two items and increase the weight for this average as an item by 1. 

(The threshold value determines the algorithm accuracy and should 

be chosen according to the available memory and data rate that d e-

termines the algorithm rate).

This is in case that both items have the same class category. If they 

have different class categories, we delete both).

c) After a time threshold for the training, we come up with a sample re-

sult like the one in table 1.

Table 1. Sample LWClass Training Results

A1 A2 … An Cl

ass

Weight

Value(a1) Value(a2) … Value(an) Class

cate-

gory

X (represents that X 

items contribute in the 

values of this tuple)

Value(a1) Value(a2) … Value(an) Class

cate-

gory

Y

Value(a1) Value(a2) … Value(an) Class

cate-

gory

Z
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3) Using the above table, we have some items that we need to classify them. 

According to the available time for the classification process, we choose 

nearest K-items and these items will be variable according to the time needed 

by the process.

4) Find the majority class category taking into account the calculated weights 

from the K items and this will be the answer for this classification task.

3.3 LWF

In this section, we present light-weight frequent items LWF algorithm. The algorithm

starts by setting the number of frequent items that will be calculated according to the 

available memory. This number changes over time to cope with the high data rate. The 

main idea behind the algorithm is the algorithm output granularity. The AG is repre-

sented here by the number of frequent items that the algorithm can calculate as well as 

the number of counters that will be re-set after some time threshold to be able to cope 

with the continuous nature of the data stream. The algorithm receives the data ele-

ments one by one and tries to find a counter for any new item and increase the item for 

the registered items. If all the counters are occupied, any new item will be ignored and 

the counters will be decreased by one till the algorithm reaches some time threshold a 

number of the least frequent items will be ignored and their counters will be re-set to 

zero. If the new item is similar to one of the items in memory according to a similarity 

threshold, the average of both items will be allocated and the counter will be increased 

by one. The main parameters that can affect the algorithm accuracy are time threshold, 

number of calculated frequent items and number of items that will be ignored and their 

counter will be re-set after some time threshold.  Fig. 5 shows the algorithm outline for 

the LWF algorithm.
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Fig. 5. LWF Algorithm

4 Empirical studies for LWC

In this section, we discuss our empirical results for the LWC algorithm. The experi-

ments were conducted using Matlab 6.0 in which the LWC is developed and the k-

means algorithm included in the Matlab package is used as a guide to measure the 

algorithm accuracy. The experiments were conducted using a machine with Pentium 4 

CPU 2.41 GHz, 480 MB of RAM, and running Windows XP Professional operation 

system.

There are three main parameters that we measure in our experiments; algo-

rithm threshold, running time and accuracy. We have conducted a number of experi-

ments to evaluate the algorithm. 

Experiment 1: (Fig. 6)

Aim: Measure the algorithm running time with different threshold values.

Experiment Setup: Running LWC several times using different threshold values 

with a synthesized data set.

Results: The higher the threshold the lower the running time.

1- Set the number of the top frequent items to k.

2- Set a counter for each k.

3- Repeat

a. Receive the item.

b. If the item is new and one of the k counters

are 0

Then

Put this item and increase the counter by 1.

Else

If the item is already in one of the k 

counters.

Then

Increase the counter by 1.

Else

If the item is new and all the counters are 

full

Then

Check the time

If time > Threshold Time

Then

Re-set number of least n of k counters to 0

Put the new item and increase the counter by 

1

Else

Ignore the item.
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Fig. 6. LWC Running Time.

Analysis: We have to minimize the threshold according to the available resources 

of memory and CPU utilization. The threshold is an rate output adaptation technique.

That is because the threshold value controls the algorithm rate (The higher the thres h-

old the lower the algorithm rate).  On the other hand, we can use the threshold as an 

application-oriented parameter that does not affect the accuracy; however it might 

increase it according to some domain knowledge about the clustering problem that 

might be known in advance.

Experiment 2: (Fig. 7)

Aim: Measuring the algorithm accuracy with different threshold values.

Experiment Setup:  Running LWC and K-means several times with different thres h-

old values. The experiment is repeated three times with different data set sizes.

Results: The lower the threshold the higher the accuracy of the algorithm which is 

measured as follows: Accuracy (LWC) = average (|sorted LWC centers – sorted K-
means centers|). The lower this measure will be, the higher the accuracy.

Fig. 7. LWC Accuracy (DS Size measured in number of data items).
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Analysis: Choosing the threshold value is an important issue to achieve the re-

quired accuracy. It should be pointed out  that from this experiment and the previous

one the higher the accuracy the higher the running time. And that both factors are 

affected by the threshold value.

Experiment 3: (Fig. 8)

Aim: Comparison of K-means and LWC centers.

Experiment setup:  Running LWC and K-means several times with the same thres h-

old but different data set sizes.

Results: Assuming that the accuracy of K-means algorithm is high because it mines 

static data sets with any number of passes. The experiment shows that LWC generates 

similar centers that K-means algorithm generates .

Fig. 8. LWC compared to K-means

Analysis: The accuracy of LWC is acceptable because it is very similar to k-means

results that process the data set as static stored data set and not streaming data. That 

means that k-means algorithm performs several passes over the data set to result in the 

final clus ter centers. As shown in the figure, the seven experiments show very similar 

cluster centers for our one-pass algorithm compared to k-means.

Experiment 4: (Fig. 9)

Aim: Measure the LWC algorithm running time against the data set sizes.

Experiment setup: Running the LWC algorithm with different large data sets.

Results: The algorithm has a linear relation with the data set size.
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Fig. 9. LWC running time with different data set sizes

Analysis: the LWC algorithm is efficient for large data sets due to the linearity of 

the running time with data set size. This linearity results from performing only one-

pass over the data stream. It is worth to point out here that the data stream rate is the 

major factor that control the behavior of LWC since the higher the rate the larger the 

size of the data set. 

Experiment 5: (Fig. 10)

Aim: Measuring the effect of the threshold on the above experiment.

Experiment setup: Running LWC algorithm with the same data set sizes as  the 

above experiment, but with decreasing threshold value with each run.

Results: The threshold value affects the running time of the algorithm since the 

maximum running time in the above experiment is approximately 12 seconds. The maxi-

mum running time in this experiment is about 47 seconds.

Fig. 10. LWC running time with different data set sizes and threshold values

Analysis: According to the application and/or the required accuracy, we have to 

maximize the threshold value to have more efficient algorithm in terms of running time. 
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The algorithm threshold would be controlled according to the available memory and a 

time threshold constraint that represents the algorithm accuracy.

Experiment 6: (Fig. 11)

Aim: Comparison between K-means and LWC efficiency.

Experiment setup: Running LWC (with a small threshold value which results in a 

high accuracy) and K-means several times on the same data sets with different sizes 

and measuring the running time. 

Results: The running time of LWC is low compared to K-means with small data set 

sizes.

Fig. 11. K-means and LWC comparison in terms of running time

Analysis: LWC is efficient compared to K-means for small data sets, when we try to 

run both on large data sets; we found that LWC outperforms the K-means. The LWC

runs with highest possible accuracy (the least threshold value) and outperforms k-

means with different data set sizes.

The above experiments show an efficient one-look clustering algorithm that is 

adaptable to the available resources using our algorithm output granularity approach.

The LWC outperforms k-means in terms of running time and has the advantage of 

linearity of running time with the increase in the data set sizes. The algorithm thres hold

is the controlling parameter of algorithm accuracy, efficiency, and algorithm output

rate.

5 Related Work

There are different algorithms proposed to deal with the high speed nature for mining 

data streams using different techniques. Clustering data streams has been studied in 

[1], [4], [6], [7], [9], [10], [15], [22], [26]. Data stream classification has been studied in 

[11], [12], [18], [28], [34]. Extracting frequent items and frequent itemsets have been 

studied in [8], [14], [23].
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The above algorithms deal with the problem of mining data streams using different

methodologies. These algorithms basically focus on the design of approximate alg o-

rithms for mining data streams. However these approaches are not resource-aware and 

do not focus on adaptation strategies to cope with high data rates, our approach for 

output rate adaptation is resource-aware approach that can adapt to the available 

resources.

6 Conclusions and Future Work

In this paper, we discussed the problems of mining data streams and proposed possi-

ble solutions. Our algorithm output granularity approach in mining data streams has 

been presented and discussed. The proposed approach is distinguished from previous 

work in mining data streams by being resource-aware. We have developed a one-pass

mining data streams algorithm. The application of the proposed approach to cluster-

ing, classification and counting frequent items has been presented. The implementa-

tion and empirical studies of our LWC algorithm have been demonstrated. The experi-

ments showed an acceptable accuracy accompanied with efficiency in ru nning time

that outperforms k-means alg orithm. Having implemented and tested LWC, we are 

developing LWClass and LWF. The application of these algorithms in a ubiquitous

environment is planned for future work. The simplicity, generality, and efficiency of 

our proposed approach in mining data streams facilitate the application of the alg o-

rithms in various scientific and business applications that require data stream analysis. 
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Abstract. Association rule mining has played an important role in data mining 
research since its introduction by Agrawal in [2]. An important question that has 
come up with this new technique is how to analyze the commonly huge number 
of rules produced by the algorithms. Many proposals have arisen, ranging from 
simple ideas, like grouping correlated rules up to more ambitious ones, such as 
the Inductive Databases [19]. Other works attempt to avoid this problem by 
imposing constraints and interestingness measures during the discovery of as-
sociation rules in order to output only the significant rules. We present a new 
proposal that defines a framework for a Data Warehouse of Association Rules 
capable of providing a full environment for analyzing association rules. This new 
approach can benefit naturally from many data warehouse features and, besides, 
it comprises an interesting framework for proposing new knowledge discovery 
models. 

1 Introduction 

Advances in data gathering mechanisms, the use of bar codes in most commercial 
products, and information on many business and governmental transactions have been 
flooding us with data, creating an urgent need for new techniques and tools to intelli-
gently and automatically aid in the transformation of this data into useful knowledge 
[8]. Data Mining, known as Knowledge Discovery in Databases – KDD, appeared as a 
group of methods, techniques and tools capable of meeting this demand. 

One of the techniques most widely studied and explored for pattern discovery in 
large databases is association rule mining. It was presented and formalized by [2], and 
quickly gained importance for its large applicability. Since then, many works propos-
ing new algorithms for association rule mining, such as 
[3,25,5,4,16,15,23,6,1,11,20,12], beside several others, affirm the importance and at-
tention that has been dedicated to this data mining area.  

Paradoxically, data mining itself can produce such great amounts of data that there 
has arisen a new knowledge management problem [17]. Association rule mining fits in 
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this category and, therefore, it needs solutions for analysis and management of dis-
covered knowledge. All solutions proposed so far to help the analysis of a huge volume 
of association rules have at least one of the following problems or restrictions: 1 – the 
analysis is restricted to valid rules at one specific moment in time, so it is not possible to 
confront valid rules in different spots of time; 2 – limited analysis capabilities, such as 
grouping criteria specification and specific interestingness measures; 3 – serious per-
formance problems, and no feasible implementation with the currently-available 
technology.  

As an alternative to avoid the problem, several works have been proposed to push 
constraints and interestingness measures into the kernel of association rule mining 
algorithms. However, the great problem concerning this solution is defining which 
constraints should be pushed and which rule characteristics are interesting. In other 
words, according to [22], were we to know what we were looking for, the discovery 
process would be trivial. Besides, by adopting this alternative, the analyst never gets an 
overview of the rules in the whole database. 

 The integration of OLAP operations with data mining tasks, proposed by [14], is a 
great advance in methods and analysis tools to support the analysis/evaluation of pat-
terns step in the knowledge discovery process. However, when it comes to association 
rules, this integration does not take place naturally, according to discussions presented 
in the same work [14]. 

The proposal of this ongoing work consists of defining a data warehouse of asso-
ciation rules through structure, operation and model specifications in order to provide a 
complete environment for analyzing association rules. The present article defines the 
desired functionalities of a data warehouse of association rules. We argue that pro-
viding sophisticated tools to assist the analyst in the pattern evaluation/analysis step 
turns out to be as important as mining association rules. There is no use to mine rules 
efficiently if we are not able to understand and find them. This new approach can 
naturally benefit from many data warehouse features, and besides, it constitutes an 
interesting framework for proposing new knowledge discovery models.  

The remainder of this work is organized as follows: section 2 presents the problem 
definition of mining association rules; section 3 presents the existing approaches for 
handling association rule mining results; section 4 presents our proposal, the Data 
Warehouse of Association Rules Framework (DWARF), and; finally, section 5 draws a 
few conclusions. 

2 Association Rule Mining - ARM 

Association rule mining is one of the most widely studied and explored techniques for 
Knowledge Discovery in Databases. Mining association rules mean searching for 
correlation patterns among facts recorded in one transactional database. Traditionally, 
the problem is presented through one classic application: the supermarket basket. A 
client’s supermarket basket consists of a set of items, such as rice, beans, meat, etc. 
Each purchase corresponds to one transaction. Discovering which supermarket items 
are frequently sold together is valuable information. As an example, we may discover 
that 70% of clients who buy sugar-free candy buy diet beverages too. The supermarket 
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manager, owning this information, can redistribute the items on the shelves; he may 
also plan promotions, besides getting a better understanding of the business and of his 
clients’ behavior. One actual example is Wal-Mart. By discovering an association 
between purchases of diapers and beers, Wal-Mart optimized their store layout in sales 
points, putting these items side by side. As a result, there was an increase of 30% in 
these product sales.   

Agrawal in [2] was the first to present and formalize the problem of association rule 
mining. The formal definition from [2] follows below. 

2.1 Formal Definition of Association Rule Mining Problem 

Let Γ = I1, I2, ..., Im be a set of binary attributes, called items. Let T be a database of 
transactions. Each transaction t is represented as a binary vector, with t[k] = 1 if t 
bought item Ik, and t[k] = 0 otherwise. There is one tuple in the database for each 
transaction. Let X be a set of some items in Γ. We say that a transaction t satisfies X if, 
for all items Ik in X, t[k] = 1. 

Association rules mean an implication of the form X → Ij, where X is a set of some 
items in Γ, and Ij is a single item in Γ that is not present in X. The rule X → Ij is satisfied 
in the set of transactions T with the confidence factor 0 ≤ c ≤ 1 iff at least c% of 
transactions in T that satisfy X also satisfy Ij. Besides, rule X → Ij has the support factor 
0 ≤ s ≤ 1, where s is the fraction of transactions in T that satisfy X U Ij. 

Support should not be confused with confidence. While confidence is a measure of 
the rule’s strength, support corresponds to statistical significance. 

In this formulation, the problem of rule mining can be decomposed into two sub-
problems: 

1. Generate all combinations of items that have fractional transaction support above a 
certain threshold, called minsupport. Call these combinations large itemsets, and all 
other combinations that do not meet the threshold small itemsets. 

2. For a given large itemset Y = I1, I2, ..., Ik, k ≥ 2, generate all rules (at most k rules) that 
use items from set I1, I2, ..., Ik. Only rules with confidence above a certain threshold 
are reported. 

Computational complexity is concentrated on the first subproblem. Once we have all 
large itemsets available, the solution of the second subproblem is extremely simple. 
That is why it is common to see the association rule mining problem reduced to a 
problem of finding large itemsets.  

3 Existing Approaches for Handling ARM Results 

Different approaches were proposed for handling results of data mining algorithms. In 
this section we present the most relevant ones emphasizing their applicability to asso-
ciation rules.   
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3.1 OLAP Mining 

Han in [14] defined the concept of OLAP Mining as a mechanism that integrates 
on-line analytical processing (OLAP) with data mining so that mining can be per-
formed at different levels of abstraction at the user’s fingertips. 

The concept of OLAP Mining predicts a total integration, it thus being possible to 
mix OLAP operation with data mining tasks. This is an extremely interesting solution 
for analyzing data mining tasks results. We mean by OLAP operations the many pos-
sible ways of interaction with a data cube in multidimensional data analysis, such as 
drill-down, roll-up, pivot, slice, dice, etc. In order for such integration to take place, we 
should be able to express a data mining task execution result as a data cube. Consid-
ering the classification and clustering mining tasks, we achieve perfect integration. In 
such tasks we can associate the pre-existing classes or the newly discovered categories 
to a new dimension. The same does not happen when considering association rules. A 
new data cube cannot easily or naturally represent the result of an association rule 
mining algorithm execution on a data cube. In [14] this integration problem is under-
lined, some alternatives are discussed but however, no solution is presented. This fact 
prevents the execution of OLAP operations to analyze the rules discovered. In other 
words, the mechanism of OLAP Mining does not provide operation for association rule 
analysis.  

3.2 Inductive Databases 

Inductive Databases, defined by Mannila in [19], are databases which, in addition to 
data, also contain inductive generalizations about the data. This approach has a basic 
principle: many data mining tasks can be described as problems on how to find inter-
esting sentences given a specific logic. Considering the association rule, we can 
translate it as the problem of finding valid rules on a database given support and con-
fidence constraints. Once this concept is adopted, the analyst’s task can be accom-
plished by simply querying the database theory using a conventional query language. 
[10] present a discussion on two alternatives: 1) mining association rules on demand as 
part of a query execution plan and; 2) discovery of all valid and interesting rules ac-
cording to some criteria and storing them in the database. A hybrid approach is also 
considered.  

Citing Goethals and Bussche [10], the framework of the Inductive Databases is an 
elegant formalization of the interactive mining process. However, we can identify some 
topics not satisfactorily solved by this framework. They are as follows: 

1. Inexistence of sophisticated analysis operations (e.g.: OLAP operations) essential 
for evaluating huge amounts of data. This deficiency also prevents the analyst from 
obtaining an overview of the rules in the whole database; 

2. Past association rules are not considered as there is no history on past association 
rules. The database theory corresponds only to the current status of the database. 

Considering the mining rule on demand approach there is an additional problem: 
how to accomplish the cleaning step, which is essential to ensure data quality? Without 
a good treatment of input data, it is impossible to obtain good results with any data 
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mining algorithms. Translated into the commonly-used sentence: garbage in, garbage 
out.  

3.3 Interestingness Measures 

Data mining algorithms, in special those of association rule mining, typically create a 
great number of patterns. However, many patterns are irrelevant or obvious, and bring 
no new knowledge [21]. Many measures have been proposed in the attempt to evaluate 
the utility and relevance of discovered patterns, which are referenced in the literature as 
interestingness measures. The use of an interestingness measure provides a ranking 
ordering the discovered patterns. 

The great challenge for interestingness measures is to quantify what is interesting to 
the analyst. The problem becomes worse if we remember that analysts usually do not 
know for sure what they are looking for and, therefore, they do not know what is in-
teresting. Thus, the analyst can be losing valuable information if we constrain the 
discovered patterns by some interestingness measure threshold. However, the use of 
interestingness measures is extremely useful to eliminate obvious patterns and to pro-
vide a ranking. It can be very useful when combined with other approaches.  

Some examples of interestingness measures that can be used on association rule are: 
Itemset Measures [3], Rule Templates [17], Interestingness [24,13,7], Surprisingness 
[9], Reliable Exceptions [18] and Peculiarity [26]. 

3.4 Visualization Techniques 

Some proposals on association rule visualization attempt to provide the analyst with an 
overview of the entire rule set. The visualization of a rule set corresponds to the prob-
lem of visualizing a hipergraph, with even the visualization of one single rule com-
prising a complex problem. [17].  

A set of association rules can be represented through, for example, a dependence 
graph (Figure 1) or a bar chart (Figure 2), showing interestingness measures (e.g., 
support or confidence). In a bar chart, we have limits on the number of dimensions, 
restricting the visualization to rules with a few items (2 items, the third dimension 
represents an interestingness measure). In a dependence graph, we do not have limits 
on the number of rule items. However, we can perceive, observing Figure 1, that even 
sets of few rules can make the graph unreadable. Besides, the node disposition problem 
represents a great challenge.  

4 Our Proposal 

Even considering reasonable thresholds for support and confidence, one can obtain 
hundreds or thousands of association rules [17]. We argue that forcing other constraints 
to reduce the number of rules produced may not be a good solution, for the analyst must 
reduce the scope of his search artificially. There is no doubt that allowing the intro-
duction of constraints is an interesting and useful feature to be used by the analyst. 
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However, we argue that this mechanism must not be used to constrain the rule’s search 
in order to make the result tractable.  

 

 

Fig. 1. Dependence graph in Rule Visualizer / Rule Graph [17] 

 

Fig. 2. Bar Chart with interestingness measure in DBMiner Associator [14] 

Facing the desirable functionalities and the limitation of the existing approaches, we 
developed the proposal for a new framework to supply the current deficiencies in the 
evaluation/analysis of association rules. In this new framework we attempt to maintain 
the advantages of the existing ideas and solve the problems with new thoughts, pro-
viding new analysis features. We call this new framework the Data Warehouse of 
Association Rules Framework – DWARF. 
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4.1 Data Warehouse of Association Rules Framework (DWARF) 

Our proposal defines a framework in which the features provided by the OLAP Mining 
mechanism, beside others, can be applied to great numbers of association rules pro-
duced by mining algorithms. The definition of a Data Warehouse of Association Rules 
has the goal of providing a complete and friendly environment in which the analyst will 
have such powerful tools that he will not have to worry about the number of rules 
produced. 

A Data Warehouse of Association Rules must have the following features: 

1. A cube cell being analyzed corresponds to a set of association rules. It should be 
possible to visualize different aggregate values representing the set, from simple 
counting to more sophisticated interestingness measures. The rule set visualization 
must also be possible, varying from simple listing to more elaborate visualization 
techniques; 

2. Allow for the association of interestingness measures, such as support and confi-
dence, to DW dimensions. As an example, it must be possible to visualize the whole 
set of rules by support ranges or to constrain the rules to be considered to any spe-
cific range; 

3. Have a Time dimension following the traditional DW approach. Any restriction in 
this dimension must have the effect of considering only valid rules on the con-
strained period being analyzed; 

4. Have two Item dimensions, one associated to rule antecedent and the other associ-
ated to rule consequent. These dimensions can have hierarchies allowing for several 
organizations and grouping of items; 

5. Allow the execution of traditional OLAP operations, such as drill-down, roll-up, 
pivot, slice, dice, etc, on the rule cube being analyzed; 

6. Other dimensions, such as spatial dimension, allowing for the restriction of rules 
valid in a specific region.  

The data necessary to the Data Warehouse of Association Rules operations must be 
available in some previously-loaded structure just as the traditional Data Warehouse.  

Besides the analysis power provided by this new approach, we believe that new 
knowledge-discovering models can be proposed on the rules stored in the DW. A pre-
liminary idea is presented on the next section.  

4.2 New Knowledge-Discovering Model Proposal 

We can think of identifying changes in a business once we have available, at DWARF, 
sets of association rules of different points of time. Using, for example, measures of 
rule similarity, we can identify similarities and differences between two rule sets. 
Imagine the following scenario: in one month, an analyst recognizes some management 
decision that should be taken based on the analysis of rules. In the next month it can be 
interesting to check whether the desired changes have occurred and, mainly, whether 
unexpected changes have taken place as a side effect of the decision taken.   
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5 Conclusions 

Analyzing great number of association rules is a problem that came up immediately 
after the definition of the first association rule mining algorithm. Since then, several 
alternative proposals and solutions have been developed. However, all current ap-
proaches have weak points. In this work, we present the Data Warehouse of Associa-
tion Rules Framework (DWARF) proposal, which aims at maintaining the advantages 
of the existing ideas and solving the problems with new ones, providing new analysis 
features. We defined the DWARF by listing the set of features it must provide. 

A great advantage of the DWARF approach is to provide analysis tools that are 
familiar to the analysts who are used to OLAP tools. Thus, it is extremely easy to be 
used by managers and decision-makers in a company. 

It is important to note that the definition of DWARF provided in this work is part of 
an ongoing project in which structures capable of providing the desired features in an 
efficient way will be researched and investigated. We strongly believe that we are in the 
right path, since other works, such as [22], point to the adaptation algorithms and de-
velopment of structures for mining data in secondary and even tertiary storage. 

We strongly believe that the consolidation of the DWARF proposal will provide an 
environment for association rule analysis capable of relieving the analyst from wor-
rying about the number of rules produced, there by leaving him free to deal only with 
his investigation. 
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Modelling Insurance Risk: A Comparison of Data 
Mining and Logistic Regression Approaches 

Inna Kolyshkina1, Peter Petocz2, Ingrid Rylander3 

Abstract 

Interest in Data Mining techniques has been increasing recently amongst the 
statistical profession. This paper presents and discusses a case study showing 
the application of one of the better-known Data Mining techniques, 
Classification and Regression Trees (CART®), to a business problem that 
required modelling risk in insurance, based on a project performed for an 
insurance company by PWC Actuarial. The nonlinear and nonparametric 
approach on which CART methodology is based provides good insights into the 
hidden patterns in such large data sets, with maybe a few million cases and 
several hundreds of possible predictor variables. Such data sets are common in 
many areas of insurance, healthcare, telecommunications, credit risk, banking, 
etc. The paper discusses the use of CART methodology and introduces some 
innovative model performance measures often used in data mining, such as gain 
or lift. The results of CART  modelling  are compared to the results achievable 
by using more traditional, linear and generalised linear modelling techniques 
such as logistic regression. Comparisons are made in terms of time taken, 
predictive power, selection of most important predictors out of large number of 
possible predictors, handling predictors with many categories (such as postcode 
or occupation code), interpretability of the model, dealing with missing values, 
etc. The more practical and non-statistical issues of implementation and client 
feedback are also discussed. 

1 Introduction 
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Interest in Data Mining techniques such as decision trees in the actuarial community 
has been  increasing.  

The main  reasons for the increasing attractiveness of decision trees are as follows: 
− It overcomes the shortcomings of linear methods that operate under the assumption 

that data is distributed either normally (as is the case in linear regression), or 
according to another distribution in the exponential family, such as binomial, 
Poisson, Gamma, inverse Gaussian etc (as it is required for a generalised linear 
model), which is often not quite the case. Decision trees are less affected by the 
distributional assumptions. 

− It relies more  heavily on “brutal force” of computing power than traditional 
models do, and because of that is less time-consuming and more precise than 
classical methods. When analyzing a large data set, say with 1 million cases and  
several hundred potential predictors, traditional approach would require 
significantly more time and will have difficulties with selecting the important 
predictors 

− Classical methods often have a hard time dealing with categorical variables with a 
large number of categories (for example, claimant’s occupation  code,  industry 
code or postcode), which means that such variables are either left out from the 
model, or have to be grouped by hand prior to including them in the model). 
 

These problems  make it difficult to use linear methods when analysing  large sets of 
data with a mix of all kinds of categorical and numeric variables.  

This article gives an example of the application of CART® (Classification and 
Regression Trees; the name is a registered trade mark, but this has not been indicated 
throughout) to modelling risk in insurance.  This nonlinear, nonparametric approach 
may provide greater insight into the hidden patterns in the data. 

 

2 Problem and background 
In workers’ compensation insurance, serious claims (for example, claims that were 
litigated or claims where the claimant stayed off work for a very long period of time 
etc), comprise only about 15% of all claims by number, but create some 90% of the 
incurred cost. This means that in order to reduce the cost in a maximally effective 
way, an insurer would need to concentrate its attention on such claims. From a 
practical point of view, the insurer must ensure that the management of claimant 
injuries is carried out in such a way that the injured person receives the most effective 
medical treatment at appropriate points in time to prevent his or her injury from 
becoming chronic and to enable the claimant to return to work in an optimal manner. 

To do so, the insurer ideally would need to know, at the time of a claim being 
received, whether the claim is likely to become serious. But in most cases this is not 
obvious as there are many factors contributing to the result. Therefore, it would be 
useful to have a model that would account for all such factors and would be able to 
predict at the outset of a claim the likelihood of this claim becoming serious. 
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3 The Data and the Analysis 
The data available for modelling was represented by several years’ worth of 
information about a large number of claims from the NSW workers’ compensation 
scheme. 

The data available contained information:  
− about the claim itself (such as date the claim was registered, policy renewal year of 

the claim, date when the claim was closed, date of the claim reopening, whether 
the claim was litigated, various liability estimates, payments made on the claim, 
reporting delay etc.  

− about the claimant. Data on claimant included demographic characteristics of the 
client such as sex, age at the time of injury, family situation and whether the 
claimant had dependants, claimant’s cultural background). Also there were 
variables related to the claimant’s occupation, type of employment and work duties 
such as code for industry and occupation, nature of employment (permanent, 
casual, part or fulltime), wages etc. 

− about the injury or disease such as time and place of injury, injury type, body 
location of the injury, cause or mechanism of injury, nature of injury etc.  
 

Overall there were about 100 variables that might have been considered as potential 
predictors, most of them categorical with many categories. For example,  the variable  
“occupation  code” had more than  250 categories, “injury location code” had more 
than 80 categories. 

The two major purposes of the analysis were: 
− to identify the most important predictors from a large number of available variables 

containing information about a claim at the time when the claim is registered; and 
− to build a model based on such predictors, which would classify a claim as “likely 

to become serious” or “not likely to become serious”.  

4 Traditional Statistical Modelling 
Our first step was to attempt building the model using logistic regression, the 
traditional statistical modelling approach for analysis of data with binary response. 
Logistic regression is a well-known classical technique and is easily implemented in 
SAS, the software package that is mainly used for statistical analysis within our 
practice as well as by the client, and is a familiar and reliable data analysis tool. We 
built logistic regression models by using SAS v8 PROC LOGISTIC and PROC 
GENMOD. 

The major difficulty that we encountered in using logistic regression was the fact 
that most variables in the data (such as location of injury, claimant’s occupation code, 
industry code and other variables) were categorical with large numbers of categories. 
This caused a considerable increase in time required for computation, and even more 
importantly, a high level of sparseness, potentially leading to instability in the model 
estimates. Although PROC LOGISTIC in version 8 of SAS does have a feature that 
can handle sparseness (see SAS, 2002), we found that using this feature was time-
consuming (it took us 1hr 56 min to run logistic regression with this feature on a 
sample of 10,000, so we decided that, considering that the model will need to be 
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refined and rerun several times, it was too time-consuming to use this feature on a 
larger sample). 

To overcome this problem and to be able to use in the model the information 
contained in such potentially important high-level categorical predictors as, for 
example, location of injury or occupation code, we had to transform these predictors. 
We grouped the categories “by hand”, according to recommendations of health 
management specialists as well as actuaries who have a lot of experience with 
insurance data, into a smaller set of broader categories. 

Selection of the most important predictors and especially predictor interactions was 
another difficult task. Logistic regression theoretically can select the set of best 
predictors by using the stepwise method, but this process might take too long if the 
number of potential predictors is high (above 100 in our example). After several 
attempts to select the predictors this way ended in the computer crashing, we decided 
to take the top 30 predictors chosen by CART and allow stepwise logistic regression 
to further refine the selection. The use of PROC LOGISTIC with a main effects 
model further identified about 20 significant predictors. 

Looking for predictor interactions using logistic regression proved to be time-
consuming and again caused sparseness problem because the interaction of two 
categorical predictors even after we manually reduced the number of categories, has 
many categories (product of numbers of categories for the both predictors involved)  

In Table 1 probability level =p means that the predicted value for a case is 1 if 
probability predicted by the logistic regression for the case is greater than p and is 0 
otherwise, sensitivity is the proportion of true positives correctly identified by the 
model for a specified probability level and specificity is the proportion of true 
negatives correctly identified by the model for a specified probability level. Table 1 
presents classification results for a few probability levels.  

 

Table 1. Classification results from the logistic regression modeling 

0.06 6,199         19,514       22,111       454            53.3 93.2 46.9 78.1 2.3
0.10 5,354         29,529       12,096       1,299         72.3 80.5 70.9 69.3 4.2
0.12 4,943         32,585       9,040         1,710         77.7 74.3 78.3 64.6 5.0
0.14 4,642         34,473       7,152         2,011         81.0 69.8 82.8 60.6 5.5
0.16 4,419         35,644       5,981         2,234         83.0 66.4 85.6 57.5 5.9
0.18 4,242         36,410       5,215         2,411         84.2 63.8 87.5 55.1 6.2
0.20 4,128         36,913       4,712         2,525         85.0 62.0 88.7 53.3 6.4
0.22 4,028         37,275       4,350         2,625         85.6 60.5 89.5 51.9 6.6
0.24 3,905         37,595       4,030         2,748         86.0 58.7 90.3 50.8 6.8
0.26 3,775         37,893       3,732         2,878         86.3 56.7 91.0 49.7 7.1
0.28 3,644         38,185       3,440         3,009         86.6 54.8 91.7 48.6 7.3
0.30 3,508         38,470       3,155         3,145         87.0 52.7 92.4 47.4 7.6
0.40 2,700         39,751       1,874         3,953         87.9 40.6 95.5 41.0 9.0
0.50 2,002         40,608       1,017         4,651         88.3 30.1 97.6 33.7 10.3
0.60 1,485         41,015       610            5,168         88.0 22.3 98.5 29.1 11.2
0.70 955            41,321       304            5,698         87.6 14.4 99.3 24.1 12.1
0.80 629            41,462       163           6,024       87.2 9.5 99.6 20.6 12.7

False POS False NEGNon-Event Correct Sensitivity Specificity
Prob 
Level Event Non-Event Event

Classification Table

Correct Incorrect Percentages

 
 
Table 1 suggests that probability level that is providing the best balance of sensitivity 
and specificity  for logistic regression is 0.18 and this is the probability level that is 
used for comparison of the confusion matrices for logistic regression and CART. 
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5 Using CART for Modelling 
We then tried a Classification and Regression Trees approach. The CART  
methodology is technically known as binary recursive partitioning (see Hastie, 
Tibshirani and Friedman, 2001). 

CART offers 2 main tools of model evaluation: gains chart and two classification 
tables also called  confusion matrices: one for the learn sample and one for the test 
sample.  

These tools allow us to appreciate three aspects of the model: conduct specificity 
and sensitivity analysis (from the classification tables), model stability (by comparing 
classification tables for the test and learn samples, Table 2), and how well model 
performs the ranking of the cases (by examining the gains chart, Figure 1). Both 
methods are easy to interpret and to explain to a client. 

The model was built using both classification methods (Gini and Twoing) that 
CART  offers as suitable for a binary response. Models resulting from using these two 
methods separately gave very similar results, additionally confirming the stability of 
the model. 

 

Table 2. Misclassification tables for the learn and test data 

 

Serious 16,922        3,891          22.99 0.23
Non-Serious 105,358      25,744        24.43 0.24

Misclassification For Learn Data
CostClass N Cases N 

Misclassed
Percentage 
Error

 
 

Non-Serious 52,866        12,923        24.44 0.24
Serious 8,558          2,275          26.58 0.27

Misclassification For Test Data
Class N Cases N 

Misclassed
Percentage 
Error

Cost
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Figure 1. Gains chart for the CART model 
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6 Comparison of Traditional and Data mining Approaches 
We identified the following differences between the two approaches: 

6.1 Computational speed and time requirements 

CART models were quicker to build (and therefore easier to refine). For example, 
running a CART model on data with some 190,000 cases and 25 predictors, some of 
which had more than 100 categories, took 9 minutes while running a stepwise logistic 
regression on a 50,000 random sample of the data with reduced numbers of categories 
for all categorical predictors (maximum 40 categories for a predictor) required 
reducing the number of categories by hand which involved consultation with health- 
management and actuarial experts, of writing a SAS program that performs the 
suggested recoding and running the program, taking a random sample of the data and 
then running the regression on the sample. This took two to three days and involved 
the time of the data analyst, actuarial consultant and health management experts. 

6.2 Significant predictor selection 

CART quickly selected around 20 significant predictors out of over 100.  Logistic 
regression implemented using PROC LOGISTIC in SAS can select “best” predictors, 
but the process can take a long time.  We decided to take the top 30 predictors chosen 
by CART and allow stepwise logistic regression to further refine the selection.  

Theoretically, PROC LOGISTIC in stepwise regression will not necessarily find 
the right model, even given enough time. The trouble with stepwise methods 
implemented in statistical packages is that they do not allow for functional form 
modification or interactions, both of which are crucial to getting the right model. It is 
fairer to say that stepwise statistical methods cannot be used to learn the correct 
functional form and cannot identify the needed interactions. The only question is: can 
they find the best linear model? Even there, the search parameters (forwards, 
backwards) will affect whether this is true  Only ‘all subsets’ can find the best linear 
approximation – but that approximation may be a terrible model (Steinberg, 2002). 

It is worth mentioning here, that if our response variable had been continuous 
rather than binary (if, for example we needed to predict the cost of treatment), the 
process of predictor selection would have been even more time-consuming, because 
we would have needed to build a generalized linear model and use PROC GENMOD 
rather than PROC LOGISTIC, and PROC GENMOD does not perform predictor 
selection. And if our target variable had had more than two non-ordinal categories (it 
was suggested at one stage to use three categories: “litigated claim”, “non-litigated 
claim with claimant staying on benefits longer that a month” and “other” ), we would 
not have been able to use either PROC GENMOD or PROC LOGISTIC to fit the 
model. Both of these limitations would be irrelevant for CART.   This demonstrates 
that CART has better and more usable built-in variable selection methods than are 
offered by widely used stepwise methods. 
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6.3 Handling categorical predictors with many categories 

Logistic regression could not handle categorical predictors with many categories (as it 
caused sparsity problem) so we needed to spend time on reducing the number of 
categories as was discussed above. CART®  did not require such time investment as 
it can deal with categorical predictors with many categories more effectively. 

6.4 Picking up interactions of predictors 

It was not easy to check the significance of interactions of predictors using logistic 
regression. Such selection would have to either be “by hand” and therefore would 
include checking the significance of some interactions chosen based on advice of the 
experts who are familiar with the data (which could leave out some potentially 
interesting interactions) or would involve checking all possible interactions which can 
be very time-consuming.  

Another issue with interaction selection is that if the predictors in whose 
interactions we are interested (for example the claimant’s occupation code and 
mechanism of injury) have relatively many categories even after reduction of the 
number of categories, it might again cause the sparsity problem. For example if after 
reduction of the number of categories the predictors have respectively 9 and 10 
categories, their interaction will have 90 categories. This issue will then need to be 
solved using time-consuming methods as described above. 

It is well known that in traditional approach higher-order (even three-way) 
interactions are usually hard to interpret. CART, on the other hand, because of the 
nature of its modelling approach, easily picks high-order interactions and the structure 
of the tree model makes it easy to interpret them. 

There are however other ways than stepwise methods  to look for interactions such 
as treating the various levels of interaction as a hierarchy, and bring whole levels in at 
a time. These ways  have not been investigated in this paper. 

6.5 Missing values  

PROC LOGISTIC automatically excludes from the analysis all observations with any 
missing values for the explanatory  variables. As we were working with a “real-life” 
data, it was reasonable to expect (as it was the case) that at least in 5% of cases there 
would be a missing value for one of the 30 predictors. This meant excluding from the 
analysis about 5% of all observations which was not desirable. CART did not have a 
problem with handling the missing values and did not require excluding any 
observations from the analysis. 

6.6 Interpretability of the model  

 
CART  model is represented in the form of a diagram and so was very visual and easy 
to interpret and to explain to the client. Logistic regression model is expressed as a 
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formula involving mathematical notation and can be easier interpreted by a client with 
some previous experience with logistic regression (or even simple regression) 
analysis. 

6.7 Individual scoring vs segmenting  

CART segmented all cases into several groups that were homogeneous in terms of 
likelihood of a serious claim (all cases within such group were assigned the same 
estimate of serious claim probability), while logistic regression gave each case an 
individual estimate of the probability of a serious claim.  

6.8 Model evaluation  

CART offers 2 main tools of model evaluation: gains chart and two classification 
tables: one for the learn sample and one for the test sample.  

These tools allow us to appreciate three aspects of the model: conduct specificity 
and sensitivity analysis (from the classification tables), model stability (by comparing 
classification tables for the test and learn samples),  

and how well model performs the ranking of the cases (by examining the gains 
chart). Both methods are easy to interpret and to explain to a client. 

Logistic regression offers a classification table, as well as traditional, standard 
linear model diagnostics such as model fit indicators, residual diagnostics etc. These 
diagnostics tools are familiar to most data analysts and allow them to make a 
judgment about overall model fit as well as analyse outliers, influential observations 
and other aspects of the model. 

6.9 Significance issues for predictors in a parametric linear model built on a 
data set with large number of cases  

Parametric linear models built on data sets with large number of cases, usually have 
problems with identifying significant predictors. This happens because the number of 
the degrees of freedom for error are large, which results in practically all model terms 
being declared by the tests as significant. In other words, hypothesis testing using chi-
squared test (which is the usual method used in all parametric linear models), does not 
work that well for large data sets. To some degree this problem can be overcome by 
building models on smaller random samples of the data and comparing them. This 
does mean that time needs to be spent on creating the random samples and rerunning 
models on them. 
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6.10 Precision  

Comparison of classification tables will help to appreciate the accuracy of prediction 
level. We also created a gains chart based on the logistic regression prediction results 
and compared it with the gains chart for the CART model  (Figure 2). 
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Figure 2. Comparison of gains with CART and Logistic Regression models 

7 Findings and Results 
The two results of the modelling that were most important for us were: 

7.1 Selection of important predictors  

The CART model quickly selected around 20 out of some 100 variables that could be 
regarded as potential predictors. It is interesting to note that some of the variables that 
turned out to be significant predictors were expected to be so on the basis of previous 
experience and analysis, for example, injury details (nature, location and mechanism 
of injury), while some others such as language skills of the claimant, were 
unexpected. 

7.2 Prediction of serious claims  

The CART model classifies correctly about 80% of all serious claims. The model 
targets 30% of all claims as “likely to be serious”. Of these about half turn out to be 
serious.  
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8 Implementation Issues and Client Feedback 
The model has been incorporated into the insurer’s computer system and 
automatically generates a “priority score” for each claim. This score is used to 
determine the level of staff who will be allocated the claim. Claims staff are grouped 
into three categories based on their experience in managing claims. 

The scoring of the claim is however not only done initially, but reviewed at set 
points in time, and when important information comes to hand. Since all the data 
fields required for generating a score are captured as part of the claims database, it is 
easy for staff to get information about the change of score. Workflow processes have 
been designed to deal with those claims which change in likeliness to be serious.  

We are implementing a continuous evaluation and feedback process to improve the 
model. A report on the results of this monitoring will be developed in due course. 

 

9 Summary and Future Directions 
In the insurance application discussed in this paper, for the analysis of large data sets,  
the CART methodology proved superior to the ‘classical’ methodology of logistic 
regression. Moreover, there is reason to believe that this is not an isolated example 
(see Salford Systems, 2002). There are situations where the logistic regression 
methods might be preferred (for instance when the number of predictors is relatively 
small, most of them are numeric rather than categorical, and the assumptions for 
logistic regression are  clearly valid), but hybrid models using the strengths of both 
approaches are already being developed and applied (Steinberg and Cardell, 1998a 
and b). For future improvement of our model, we plan to investigate and apply such 
hybrid models. 
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